This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfm2.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| Assertion | fmfg | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfm2.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| 2 | 1 | elfm2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑥 ) ) ) |
| 3 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 4 | 1 3 | eqeltrid | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
| 5 | filfbas | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝐿 ∈ ( fBas ‘ 𝑌 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐿 ∈ ( fBas ‘ 𝑌 ) ) |
| 7 | elfm | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐿 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑥 ) ) ) | |
| 8 | 6 7 | syl3an2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑥 ) ) ) |
| 9 | 2 8 | bitr4d | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ 𝑥 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 10 | 9 | eqrdv | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) |