This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpm2r | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | ⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → dom 𝐹 = 𝐶 ) | |
| 2 | 1 | feq2d | ⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ↔ 𝐹 : 𝐶 ⟶ 𝐴 ) ) |
| 3 | 1 | sseq1d | ⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵 ) ) |
| 4 | 2 3 | anbi12d | ⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ↔ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ↔ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
| 6 | 5 | ibir | ⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) |
| 7 | elpm2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) ) | |
| 8 | 6 7 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) → 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐹 : 𝐶 ⟶ 𝐴 ∧ 𝐶 ⊆ 𝐵 ) ) → 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) ) |