This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| Assertion | clwlkclwwlklem2a4 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 3 | lencl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 4 | 1 | clwlkclwwlklem2fv2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 6 | 2 5 | sylan9eqr | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 7 | 6 | ex | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 12 | f1f1orn | ⊢ ( 𝐸 : dom 𝐸 –1-1→ 𝑅 → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
| 15 | lsw | ⊢ ( 𝑃 ∈ Word 𝑉 → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 17 | nn0cn | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℂ ) | |
| 18 | id | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ♯ ‘ 𝑃 ) ∈ ℂ ) | |
| 19 | 2cnd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → 2 ∈ ℂ ) | |
| 20 | 1cnd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → 1 ∈ ℂ ) | |
| 21 | 18 19 20 | subsubd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 22 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 23 | 22 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( 2 − 1 ) = 1 ) |
| 24 | 23 | oveq2d | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 25 | 21 24 | eqtr3d | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 26 | 3 17 25 | 3syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 29 | eqeq2 | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) | |
| 30 | 29 | eqcoms | ⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 32 | 28 31 | mpbird | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 33 | 32 | ex | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 34 | 16 33 | sylbid | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 35 | 34 | 3ad2ant2 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 36 | 35 | com12 | ⊢ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 38 | 37 | impcom | ⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 40 | 39 | preq2d | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 41 | fveq2 | ⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 42 | fvoveq1 | ⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) | |
| 43 | 41 42 | preq12d | ⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 44 | 43 | eqeq1d | ⊢ ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 46 | 40 45 | mpbird | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 47 | 46 | eleq1d | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 48 | 47 | biimpd | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 49 | 48 | impancom | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 50 | 49 | impcom | ⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) |
| 51 | f1ocnvfv2 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) | |
| 52 | 14 50 51 | syl2an2 | ⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 53 | eqcom | ⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 54 | 53 | biimpi | ⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 55 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 56 | 55 | a1i | ⊢ ( 𝑃 ∈ Word 𝑉 → 1 = ( 2 − 1 ) ) |
| 57 | 56 | oveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) ) |
| 58 | 3 17 | syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 59 | 2cnd | ⊢ ( 𝑃 ∈ Word 𝑉 → 2 ∈ ℂ ) | |
| 60 | 1cnd | ⊢ ( 𝑃 ∈ Word 𝑉 → 1 ∈ ℂ ) | |
| 61 | 58 59 60 | subsubd | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 62 | 57 61 | eqtrd | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) |
| 63 | 62 | fveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 64 | 54 63 | sylan9eqr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 65 | 64 | ex | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) ) |
| 66 | 16 65 | sylbid | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) ) |
| 67 | 66 | imp | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) ) |
| 68 | 67 | preq2d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 69 | 68 | adantr | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 70 | 43 | adantl | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 ) − 2 ) + 1 ) ) } ) |
| 71 | 69 70 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) ∧ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 72 | 71 | exp31 | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 73 | 72 | 3ad2ant2 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 74 | 73 | com12 | ⊢ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 75 | 74 | adantr | ⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 76 | 75 | impcom | ⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 77 | 76 | adantr | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 78 | 77 | impcom | ⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 79 | 11 52 78 | 3eqtrd | ⊢ ( ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 80 | simpll | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 81 | oveq1 | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 2 − 1 ) ) | |
| 82 | 81 22 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 1 ) = 1 ) |
| 83 | 82 | oveq2d | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ..^ 1 ) ) |
| 84 | 83 | eleq2d | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ 𝐼 ∈ ( 0 ..^ 1 ) ) ) |
| 85 | oveq1 | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 2 ) = ( 2 − 2 ) ) | |
| 86 | 2cn | ⊢ 2 ∈ ℂ | |
| 87 | 86 | subidi | ⊢ ( 2 − 2 ) = 0 |
| 88 | 85 87 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ♯ ‘ 𝑃 ) − 2 ) = 0 ) |
| 89 | 88 | eqeq2d | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ 𝐼 = 0 ) ) |
| 90 | 89 | notbid | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ¬ 𝐼 = 0 ) ) |
| 91 | 84 90 | anbi12d | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ↔ ( 𝐼 ∈ ( 0 ..^ 1 ) ∧ ¬ 𝐼 = 0 ) ) ) |
| 92 | elsni | ⊢ ( 𝐼 ∈ { 0 } → 𝐼 = 0 ) | |
| 93 | 92 | pm2.24d | ⊢ ( 𝐼 ∈ { 0 } → ( ¬ 𝐼 = 0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 94 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 95 | 93 94 | eleq2s | ⊢ ( 𝐼 ∈ ( 0 ..^ 1 ) → ( ¬ 𝐼 = 0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 96 | 95 | imp | ⊢ ( ( 𝐼 ∈ ( 0 ..^ 1 ) ∧ ¬ 𝐼 = 0 ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 97 | 91 96 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 98 | 97 | adantld | ⊢ ( ( ♯ ‘ 𝑃 ) = 2 → ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 99 | df-ne | ⊢ ( ( ♯ ‘ 𝑃 ) ≠ 2 ↔ ¬ ( ♯ ‘ 𝑃 ) = 2 ) | |
| 100 | 2re | ⊢ 2 ∈ ℝ | |
| 101 | 100 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ∈ ℝ ) |
| 102 | nn0re | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) | |
| 103 | 102 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
| 104 | simpr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) | |
| 105 | 101 103 104 | leltned | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 2 < ( ♯ ‘ 𝑃 ) ↔ ( ♯ ‘ 𝑃 ) ≠ 2 ) ) |
| 106 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 107 | simp-4l | ⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → 𝐼 ∈ ℕ0 ) | |
| 108 | nn0z | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) | |
| 109 | 2z | ⊢ 2 ∈ ℤ | |
| 110 | 109 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℤ ) |
| 111 | 108 110 | zsubcld | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 112 | 111 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 113 | 100 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 114 | 113 102 | posdifd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝑃 ) ↔ 0 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 115 | 114 | biimpa | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 < ( ♯ ‘ 𝑃 ) ) → 0 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 116 | elnnz | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 117 | 112 115 116 | sylanbrc | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ) |
| 118 | 117 | ad5ant24 | ⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ) |
| 119 | nn0z | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) | |
| 120 | peano2zm | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℤ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) | |
| 121 | 108 120 | syl | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) |
| 122 | zltlem1 | ⊢ ( ( 𝐼 ∈ ℤ ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ 𝐼 ≤ ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ) ) | |
| 123 | 119 121 122 | syl2an | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ 𝐼 ≤ ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ) ) |
| 124 | 17 | adantl | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 125 | 1cnd | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 126 | 124 125 125 | subsub4d | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − ( 1 + 1 ) ) ) |
| 127 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 128 | 127 | a1i | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 1 + 1 ) = 2 ) |
| 129 | 128 | oveq2d | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑃 ) − ( 1 + 1 ) ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 130 | 126 129 | eqtrd | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 131 | 130 | breq2d | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 ≤ ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 1 ) ↔ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 132 | 123 131 | bitrd | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 133 | necom | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ↔ 𝐼 ≠ ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 134 | df-ne | ⊢ ( 𝐼 ≠ ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 135 | 133 134 | bitr2i | ⊢ ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ) |
| 136 | nn0re | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) | |
| 137 | 136 | ad2antrr | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝐼 ∈ ℝ ) |
| 138 | 102 113 | resubcld | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) |
| 139 | 138 | ad2antlr | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) |
| 140 | simpr | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 141 | leltne | ⊢ ( ( 𝐼 ∈ ℝ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ) ) | |
| 142 | 141 | bicomd | ⊢ ( ( 𝐼 ∈ ℝ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ↔ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 143 | 137 139 140 142 | syl3anc | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 ↔ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 144 | 143 | biimpd | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 2 ) ≠ 𝐼 → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 145 | 135 144 | biimtrid | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 146 | 145 | ex | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 147 | 132 146 | sylbid | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 148 | 147 | com23 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 149 | 148 | imp | ⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 150 | 149 | adantr | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 151 | 150 | imp | ⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 152 | 107 118 151 | 3jca | ⊢ ( ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 153 | 152 | ex | ⊢ ( ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ∧ 2 < ( ♯ ‘ 𝑃 ) ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 154 | 153 | exp41 | ⊢ ( 𝐼 ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) ) |
| 155 | 154 | com25 | ⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) ) |
| 156 | 155 | imp | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 157 | 156 | 3adant2 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 158 | 106 157 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 159 | 158 | imp | ⊢ ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 160 | 159 | com13 | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 161 | 160 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 2 < ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 162 | 105 161 | sylbird | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) ≠ 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 163 | 99 162 | biimtrrid | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 164 | 163 | com23 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 165 | 164 | imp | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 166 | 165 | com12 | ⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 2 → ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 167 | 98 166 | pm2.61i | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 168 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ ∧ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 169 | 167 168 | sylibr | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 170 | 80 169 | jca | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 171 | 170 | exp31 | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 172 | 3 171 | syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 173 | 172 | imp | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 174 | 173 | 3adant1 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∧ ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 175 | 174 | expd | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 176 | 175 | com12 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 177 | 176 | adantl | ⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) ) |
| 178 | 177 | impcom | ⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 179 | 178 | adantr | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) ) |
| 180 | 179 | impcom | ⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 181 | 1 | clwlkclwwlklem2fv1 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 182 | 180 181 | syl | ⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 183 | 182 | fveq2d | ⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |
| 184 | simprr | ⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) | |
| 185 | f1ocnvfv2 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) | |
| 186 | 14 184 185 | syl2an2 | ⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 187 | 183 186 | eqtrd | ⊢ ( ( ¬ 𝐼 = ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 188 | 79 187 | pm2.61ian | ⊢ ( ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) ∧ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 189 | 188 | exp31 | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ∈ ran 𝐸 → ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) ) = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) ) |