This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4b for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| Assertion | clwlkclwwlklem2fv2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| 2 | simpr | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 3 | nn0z | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) | |
| 4 | 2z | ⊢ 2 ∈ ℤ | |
| 5 | 3 4 | jctir | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ∈ ℤ ∧ 2 ∈ ℤ ) ) |
| 6 | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) | |
| 7 | 5 6 | syl | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 8 | 7 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 9 | 8 | adantr | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 10 | 2 9 | eqeltrd | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝑥 ∈ ℤ ) |
| 11 | 10 | ex | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → 𝑥 ∈ ℤ ) ) |
| 12 | zre | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) | |
| 13 | nn0re | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) | |
| 14 | 2re | ⊢ 2 ∈ ℝ | |
| 15 | 14 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 16 | 13 15 | resubcld | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) |
| 18 | lttri3 | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℝ ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ( ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ¬ ( ( ♯ ‘ 𝑃 ) − 2 ) < 𝑥 ) ) ) | |
| 19 | 12 17 18 | syl2anr | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ ( ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ¬ ( ( ♯ ‘ 𝑃 ) − 2 ) < 𝑥 ) ) ) |
| 20 | simpl | ⊢ ( ( ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ∧ ¬ ( ( ♯ ‘ 𝑃 ) − 2 ) < 𝑥 ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 21 | 19 20 | biimtrdi | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 22 | 21 | ex | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑥 ∈ ℤ → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 23 | 11 22 | syld | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 24 | 23 | com13 | ⊢ ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ) |
| 25 | 24 | pm2.43i | ⊢ ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 26 | 25 | impcom | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ¬ 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 27 | 26 | iffalsed | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 30 | 29 | preq1d | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) |
| 31 | 30 | fveq2d | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 32 | 27 31 | eqtrd | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑥 = ( ( ♯ ‘ 𝑃 ) − 2 ) ) → if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |
| 33 | 5 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℤ ∧ 2 ∈ ℤ ) ) |
| 34 | 33 6 | syl | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 35 | 13 15 | subge0d | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 36 | 35 | biimpar | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 37 | elnn0z | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ0 ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 38 | 34 36 37 | sylanbrc | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ0 ) |
| 39 | nn0ge2m1nn | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ ) | |
| 40 | 1red | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 1 ∈ ℝ ) | |
| 41 | 14 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ∈ ℝ ) |
| 42 | 13 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
| 43 | 1lt2 | ⊢ 1 < 2 | |
| 44 | 43 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 1 < 2 ) |
| 45 | 40 41 42 44 | ltsub2dd | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) < ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 46 | elfzo0 | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) < ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 47 | 38 39 45 46 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 48 | fvexd | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ∈ V ) | |
| 49 | 1 32 47 48 | fvmptd2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ) ) |