This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| leltned.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| Assertion | leltned | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | leltned.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | leltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |