This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4a for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| Assertion | clwlkclwwlklem2fv1 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) | |
| 2 | breq1 | ⊢ ( 𝑥 = 𝐼 → ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐼 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐼 ) ) | |
| 4 | fvoveq1 | ⊢ ( 𝑥 = 𝐼 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) | |
| 5 | 3 4 | preq12d | ⊢ ( 𝑥 = 𝐼 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑥 = 𝐼 → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 7 | 3 | preq1d | ⊢ ( 𝑥 = 𝐼 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = 𝐼 → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) ) |
| 9 | 2 6 8 | ifbieq12d | ⊢ ( 𝑥 = 𝐼 → if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) = if ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 10 | elfzolt2 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
| 12 | 11 | iftrued | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → if ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 13 | 9 12 | sylan9eqr | ⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ∧ 𝑥 = 𝐼 ) → if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
| 14 | nn0z | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) | |
| 15 | 2z | ⊢ 2 ∈ ℤ | |
| 16 | 15 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℤ ) |
| 17 | 14 16 | zsubcld | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
| 18 | peano2zm | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℤ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) | |
| 19 | 14 18 | syl | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) |
| 20 | 1red | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 1 ∈ ℝ ) | |
| 21 | 2re | ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 23 | nn0re | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) | |
| 24 | 1le2 | ⊢ 1 ≤ 2 | |
| 25 | 24 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 1 ≤ 2 ) |
| 26 | 20 22 23 25 | lesub2dd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ≤ ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 27 | eluz2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ≤ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 28 | 17 19 26 27 | syl3anbrc | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
| 29 | fzoss2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 31 | 30 | sselda | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 32 | fvexd | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ∈ V ) | |
| 33 | 1 13 31 32 | fvmptd2 | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |