This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| Assertion | clwlkclwwlklem2a4 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| 2 | fveq2 | |- ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( F ` ( ( # ` P ) - 2 ) ) ) |
|
| 3 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 4 | 1 | clwlkclwwlklem2fv2 | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 5 | 3 4 | sylan | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 6 | 2 5 | sylan9eqr | |- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 7 | 6 | ex | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
| 8 | 7 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
| 9 | 8 | ad2antrr | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
| 10 | 9 | impcom | |- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 11 | 10 | fveq2d | |- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = ( E ` ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
| 12 | f1f1orn | |- ( E : dom E -1-1-> R -> E : dom E -1-1-onto-> ran E ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> E : dom E -1-1-onto-> ran E ) |
| 14 | 13 | ad2antrr | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> E : dom E -1-1-onto-> ran E ) |
| 15 | lsw | |- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
| 16 | 15 | eqeq1d | |- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) <-> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) ) |
| 17 | nn0cn | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. CC ) |
|
| 18 | id | |- ( ( # ` P ) e. CC -> ( # ` P ) e. CC ) |
|
| 19 | 2cnd | |- ( ( # ` P ) e. CC -> 2 e. CC ) |
|
| 20 | 1cnd | |- ( ( # ` P ) e. CC -> 1 e. CC ) |
|
| 21 | 18 19 20 | subsubd | |- ( ( # ` P ) e. CC -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 22 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 23 | 22 | a1i | |- ( ( # ` P ) e. CC -> ( 2 - 1 ) = 1 ) |
| 24 | 23 | oveq2d | |- ( ( # ` P ) e. CC -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( # ` P ) - 1 ) ) |
| 25 | 21 24 | eqtr3d | |- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 2 ) + 1 ) = ( ( # ` P ) - 1 ) ) |
| 26 | 3 17 25 | 3syl | |- ( P e. Word V -> ( ( ( # ` P ) - 2 ) + 1 ) = ( ( # ` P ) - 1 ) ) |
| 27 | 26 | adantr | |- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( ( ( # ` P ) - 2 ) + 1 ) = ( ( # ` P ) - 1 ) ) |
| 28 | 27 | fveq2d | |- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 29 | eqeq2 | |- ( ( P ` 0 ) = ( P ` ( ( # ` P ) - 1 ) ) -> ( ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) ) |
|
| 30 | 29 | eqcoms | |- ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) ) |
| 31 | 30 | adantl | |- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) ) |
| 32 | 28 31 | mpbird | |- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) |
| 33 | 32 | ex | |- ( P e. Word V -> ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
| 34 | 16 33 | sylbid | |- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
| 35 | 34 | 3ad2ant2 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
| 36 | 35 | com12 | |- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
| 37 | 36 | adantr | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
| 38 | 37 | impcom | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) |
| 39 | 38 | adantr | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) |
| 40 | 39 | preq2d | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
| 41 | fveq2 | |- ( I = ( ( # ` P ) - 2 ) -> ( P ` I ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
|
| 42 | fvoveq1 | |- ( I = ( ( # ` P ) - 2 ) -> ( P ` ( I + 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
|
| 43 | 41 42 | preq12d | |- ( I = ( ( # ` P ) - 2 ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 44 | 43 | eqeq1d | |- ( I = ( ( # ` P ) - 2 ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 45 | 44 | adantl | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 46 | 40 45 | mpbird | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
| 47 | 46 | eleq1d | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) |
| 48 | 47 | biimpd | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) |
| 49 | 48 | impancom | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) |
| 50 | 49 | impcom | |- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) |
| 51 | f1ocnvfv2 | |- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
|
| 52 | 14 50 51 | syl2an2 | |- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
| 53 | eqcom | |- ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) <-> ( P ` 0 ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
| 54 | 53 | biimpi | |- ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( P ` 0 ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 55 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 56 | 55 | a1i | |- ( P e. Word V -> 1 = ( 2 - 1 ) ) |
| 57 | 56 | oveq2d | |- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( # ` P ) - ( 2 - 1 ) ) ) |
| 58 | 3 17 | syl | |- ( P e. Word V -> ( # ` P ) e. CC ) |
| 59 | 2cnd | |- ( P e. Word V -> 2 e. CC ) |
|
| 60 | 1cnd | |- ( P e. Word V -> 1 e. CC ) |
|
| 61 | 58 59 60 | subsubd | |- ( P e. Word V -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 62 | 57 61 | eqtrd | |- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 63 | 62 | fveq2d | |- ( P e. Word V -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 64 | 54 63 | sylan9eqr | |- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 65 | 64 | ex | |- ( P e. Word V -> ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
| 66 | 16 65 | sylbid | |- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
| 67 | 66 | imp | |- ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 68 | 67 | preq2d | |- ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 69 | 68 | adantr | |- ( ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 70 | 43 | adantl | |- ( ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 71 | 69 70 | eqtr4d | |- ( ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 72 | 71 | exp31 | |- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
| 73 | 72 | 3ad2ant2 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
| 74 | 73 | com12 | |- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
| 75 | 74 | adantr | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
| 76 | 75 | impcom | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 77 | 76 | adantr | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 78 | 77 | impcom | |- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 79 | 11 52 78 | 3eqtrd | |- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 80 | simpll | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( # ` P ) e. NN0 ) |
|
| 81 | oveq1 | |- ( ( # ` P ) = 2 -> ( ( # ` P ) - 1 ) = ( 2 - 1 ) ) |
|
| 82 | 81 22 | eqtrdi | |- ( ( # ` P ) = 2 -> ( ( # ` P ) - 1 ) = 1 ) |
| 83 | 82 | oveq2d | |- ( ( # ` P ) = 2 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ 1 ) ) |
| 84 | 83 | eleq2d | |- ( ( # ` P ) = 2 -> ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> I e. ( 0 ..^ 1 ) ) ) |
| 85 | oveq1 | |- ( ( # ` P ) = 2 -> ( ( # ` P ) - 2 ) = ( 2 - 2 ) ) |
|
| 86 | 2cn | |- 2 e. CC |
|
| 87 | 86 | subidi | |- ( 2 - 2 ) = 0 |
| 88 | 85 87 | eqtrdi | |- ( ( # ` P ) = 2 -> ( ( # ` P ) - 2 ) = 0 ) |
| 89 | 88 | eqeq2d | |- ( ( # ` P ) = 2 -> ( I = ( ( # ` P ) - 2 ) <-> I = 0 ) ) |
| 90 | 89 | notbid | |- ( ( # ` P ) = 2 -> ( -. I = ( ( # ` P ) - 2 ) <-> -. I = 0 ) ) |
| 91 | 84 90 | anbi12d | |- ( ( # ` P ) = 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) <-> ( I e. ( 0 ..^ 1 ) /\ -. I = 0 ) ) ) |
| 92 | elsni | |- ( I e. { 0 } -> I = 0 ) |
|
| 93 | 92 | pm2.24d | |- ( I e. { 0 } -> ( -. I = 0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 94 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 95 | 93 94 | eleq2s | |- ( I e. ( 0 ..^ 1 ) -> ( -. I = 0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 96 | 95 | imp | |- ( ( I e. ( 0 ..^ 1 ) /\ -. I = 0 ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
| 97 | 91 96 | biimtrdi | |- ( ( # ` P ) = 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 98 | 97 | adantld | |- ( ( # ` P ) = 2 -> ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 99 | df-ne | |- ( ( # ` P ) =/= 2 <-> -. ( # ` P ) = 2 ) |
|
| 100 | 2re | |- 2 e. RR |
|
| 101 | 100 | a1i | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 e. RR ) |
| 102 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 103 | 102 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. RR ) |
| 104 | simpr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) |
|
| 105 | 101 103 104 | leltned | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( 2 < ( # ` P ) <-> ( # ` P ) =/= 2 ) ) |
| 106 | elfzo0 | |- ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> ( I e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ I < ( ( # ` P ) - 1 ) ) ) |
|
| 107 | simp-4l | |- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> I e. NN0 ) |
|
| 108 | nn0z | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
|
| 109 | 2z | |- 2 e. ZZ |
|
| 110 | 109 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. ZZ ) |
| 111 | 108 110 | zsubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 112 | 111 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 < ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 113 | 100 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 114 | 113 102 | posdifd | |- ( ( # ` P ) e. NN0 -> ( 2 < ( # ` P ) <-> 0 < ( ( # ` P ) - 2 ) ) ) |
| 115 | 114 | biimpa | |- ( ( ( # ` P ) e. NN0 /\ 2 < ( # ` P ) ) -> 0 < ( ( # ` P ) - 2 ) ) |
| 116 | elnnz | |- ( ( ( # ` P ) - 2 ) e. NN <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 < ( ( # ` P ) - 2 ) ) ) |
|
| 117 | 112 115 116 | sylanbrc | |- ( ( ( # ` P ) e. NN0 /\ 2 < ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN ) |
| 118 | 117 | ad5ant24 | |- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> ( ( # ` P ) - 2 ) e. NN ) |
| 119 | nn0z | |- ( I e. NN0 -> I e. ZZ ) |
|
| 120 | peano2zm | |- ( ( # ` P ) e. ZZ -> ( ( # ` P ) - 1 ) e. ZZ ) |
|
| 121 | 108 120 | syl | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ZZ ) |
| 122 | zltlem1 | |- ( ( I e. ZZ /\ ( ( # ` P ) - 1 ) e. ZZ ) -> ( I < ( ( # ` P ) - 1 ) <-> I <_ ( ( ( # ` P ) - 1 ) - 1 ) ) ) |
|
| 123 | 119 121 122 | syl2an | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I < ( ( # ` P ) - 1 ) <-> I <_ ( ( ( # ` P ) - 1 ) - 1 ) ) ) |
| 124 | 17 | adantl | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( # ` P ) e. CC ) |
| 125 | 1cnd | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> 1 e. CC ) |
|
| 126 | 124 125 125 | subsub4d | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - ( 1 + 1 ) ) ) |
| 127 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 128 | 127 | a1i | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( 1 + 1 ) = 2 ) |
| 129 | 128 | oveq2d | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( # ` P ) - ( 1 + 1 ) ) = ( ( # ` P ) - 2 ) ) |
| 130 | 126 129 | eqtrd | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 131 | 130 | breq2d | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I <_ ( ( ( # ` P ) - 1 ) - 1 ) <-> I <_ ( ( # ` P ) - 2 ) ) ) |
| 132 | 123 131 | bitrd | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I < ( ( # ` P ) - 1 ) <-> I <_ ( ( # ` P ) - 2 ) ) ) |
| 133 | necom | |- ( ( ( # ` P ) - 2 ) =/= I <-> I =/= ( ( # ` P ) - 2 ) ) |
|
| 134 | df-ne | |- ( I =/= ( ( # ` P ) - 2 ) <-> -. I = ( ( # ` P ) - 2 ) ) |
|
| 135 | 133 134 | bitr2i | |- ( -. I = ( ( # ` P ) - 2 ) <-> ( ( # ` P ) - 2 ) =/= I ) |
| 136 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 137 | 136 | ad2antrr | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> I e. RR ) |
| 138 | 102 113 | resubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. RR ) |
| 139 | 138 | ad2antlr | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) e. RR ) |
| 140 | simpr | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> I <_ ( ( # ` P ) - 2 ) ) |
|
| 141 | leltne | |- ( ( I e. RR /\ ( ( # ` P ) - 2 ) e. RR /\ I <_ ( ( # ` P ) - 2 ) ) -> ( I < ( ( # ` P ) - 2 ) <-> ( ( # ` P ) - 2 ) =/= I ) ) |
|
| 142 | 141 | bicomd | |- ( ( I e. RR /\ ( ( # ` P ) - 2 ) e. RR /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) =/= I <-> I < ( ( # ` P ) - 2 ) ) ) |
| 143 | 137 139 140 142 | syl3anc | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) =/= I <-> I < ( ( # ` P ) - 2 ) ) ) |
| 144 | 143 | biimpd | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) =/= I -> I < ( ( # ` P ) - 2 ) ) ) |
| 145 | 135 144 | biimtrid | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> I < ( ( # ` P ) - 2 ) ) ) |
| 146 | 145 | ex | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I <_ ( ( # ` P ) - 2 ) -> ( -. I = ( ( # ` P ) - 2 ) -> I < ( ( # ` P ) - 2 ) ) ) ) |
| 147 | 132 146 | sylbid | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I < ( ( # ` P ) - 1 ) -> ( -. I = ( ( # ` P ) - 2 ) -> I < ( ( # ` P ) - 2 ) ) ) ) |
| 148 | 147 | com23 | |- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( I < ( ( # ` P ) - 1 ) -> I < ( ( # ` P ) - 2 ) ) ) ) |
| 149 | 148 | imp | |- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I < ( ( # ` P ) - 1 ) -> I < ( ( # ` P ) - 2 ) ) ) |
| 150 | 149 | adantr | |- ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) -> ( I < ( ( # ` P ) - 1 ) -> I < ( ( # ` P ) - 2 ) ) ) |
| 151 | 150 | imp | |- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> I < ( ( # ` P ) - 2 ) ) |
| 152 | 107 118 151 | 3jca | |- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
| 153 | 152 | ex | |- ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) -> ( I < ( ( # ` P ) - 1 ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 154 | 153 | exp41 | |- ( I e. NN0 -> ( ( # ` P ) e. NN0 -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( I < ( ( # ` P ) - 1 ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) ) |
| 155 | 154 | com25 | |- ( I e. NN0 -> ( I < ( ( # ` P ) - 1 ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) ) |
| 156 | 155 | imp | |- ( ( I e. NN0 /\ I < ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 157 | 156 | 3adant2 | |- ( ( I e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ I < ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 158 | 106 157 | sylbi | |- ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 159 | 158 | imp | |- ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
| 160 | 159 | com13 | |- ( ( # ` P ) e. NN0 -> ( 2 < ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
| 161 | 160 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( 2 < ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
| 162 | 105 161 | sylbird | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) =/= 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
| 163 | 99 162 | biimtrrid | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( -. ( # ` P ) = 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
| 164 | 163 | com23 | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( -. ( # ` P ) = 2 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
| 165 | 164 | imp | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( -. ( # ` P ) = 2 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 166 | 165 | com12 | |- ( -. ( # ` P ) = 2 -> ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
| 167 | 98 166 | pm2.61i | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
| 168 | elfzo0 | |- ( I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) <-> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
|
| 169 | 167 168 | sylibr | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) |
| 170 | 80 169 | jca | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) |
| 171 | 170 | exp31 | |- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 172 | 3 171 | syl | |- ( P e. Word V -> ( 2 <_ ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 173 | 172 | imp | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
| 174 | 173 | 3adant1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
| 175 | 174 | expd | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 176 | 175 | com12 | |- ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 177 | 176 | adantl | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
| 178 | 177 | impcom | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
| 179 | 178 | adantr | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
| 180 | 179 | impcom | |- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) |
| 181 | 1 | clwlkclwwlklem2fv1 | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 182 | 180 181 | syl | |- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 183 | 182 | fveq2d | |- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = ( E ` ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
| 184 | simprr | |- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) |
|
| 185 | f1ocnvfv2 | |- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
|
| 186 | 14 184 185 | syl2an2 | |- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 187 | 183 186 | eqtrd | |- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 188 | 79 187 | pm2.61ian | |- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 189 | 188 | exp31 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |