This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | clnbgrgrim | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fveqeq2 | ⊢ ( 𝑛 = 𝑋 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 3 | 1 | clnbgrvtxel | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 5 | eqidd | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 6 | 2 4 5 | rspcedvdw | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 8 | eqeq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 9 | 8 | rexbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) → ( ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 10 | 7 9 | syl5ibrcom | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝑥 = ( 𝐹 ‘ 𝑋 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 11 | simpl2 | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) | |
| 12 | simpl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 13 | simp3 | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 14 | simpl | ⊢ ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) → 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) | |
| 15 | 13 14 | anim12i | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 16 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 17 | eqid | ⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) | |
| 18 | 1 16 17 | clnbgrgrimlem | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝑒 ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 19 | 11 12 15 18 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝑒 ∈ ( Edg ‘ 𝐻 ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 20 | 19 | expd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( 𝑒 ∈ ( Edg ‘ 𝐻 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) ) |
| 21 | 20 | rexlimdv | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 22 | 10 21 | jaod | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 23 | 22 | expimpd | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 24 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 25 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 26 | 1 16 24 25 | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 27 | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) |
| 31 | 1 | clnbgrisvtx | ⊢ ( 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → 𝑛 ∈ 𝑉 ) |
| 32 | 31 | adantl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) → 𝑛 ∈ 𝑉 ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → 𝑛 ∈ 𝑉 ) |
| 34 | 30 33 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 35 | eleq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) ) | |
| 36 | 35 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ↔ ( 𝐹 ‘ 𝑛 ) ∈ ( Vtx ‘ 𝐻 ) ) ) |
| 38 | 34 37 | mpbird | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → 𝑥 ∈ ( Vtx ‘ 𝐻 ) ) |
| 39 | simp3 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 40 | 29 39 | ffvelcdmd | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) |
| 42 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 43 | 1 42 | clnbgrel | ⊢ ( 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑋 ∨ ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 ) ) ) |
| 44 | fveq2 | ⊢ ( 𝑛 = 𝑋 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 45 | 44 | orcd | ⊢ ( 𝑛 = 𝑋 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 46 | 45 | 2a1d | ⊢ ( 𝑛 = 𝑋 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 47 | 24 | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 49 | 48 | 3ad2ant2 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 50 | 49 | biimpa | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 51 | 2fveq3 | ⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) | |
| 52 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) | |
| 53 | 52 | imaeq2d | ⊢ ( 𝑖 = 𝑗 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 54 | 51 53 | eqeq12d | ⊢ ( 𝑖 = 𝑗 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 55 | 54 | rspcv | ⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 56 | 55 | 3ad2ant3 | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 57 | sseq2 | ⊢ ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 ↔ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) | |
| 58 | 57 | 3ad2ant3 | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 ↔ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 59 | sseq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ↔ { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | |
| 60 | 25 | uhgrfun | ⊢ ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) ) |
| 61 | 60 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 62 | 61 | 3ad2ant3 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 63 | f1of | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) | |
| 64 | 63 | adantl | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 65 | 64 | 3ad2ant1 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 66 | 65 | ffvelcdmda | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 67 | 25 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑔 ‘ 𝑗 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 68 | 62 66 67 | syl2an2r | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 69 | 68 | 3adant2 | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 70 | 69 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 71 | 70 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 72 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 Fn 𝑉 ) | |
| 73 | 72 | adantr | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 Fn 𝑉 ) |
| 74 | 73 | 3ad2ant1 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝐹 Fn 𝑉 ) |
| 75 | 74 | 3ad2ant1 | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐹 Fn 𝑉 ) |
| 76 | 75 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) → 𝐹 Fn 𝑉 ) |
| 77 | pm3.22 | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) | |
| 78 | 76 77 | anim12i | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 79 | 78 | 3adant2 | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) |
| 80 | 3anass | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ↔ ( 𝐹 Fn 𝑉 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) ) | |
| 81 | 79 80 | sylibr | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) ) |
| 82 | fnimapr | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉 ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ) | |
| 83 | 81 82 | syl | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ) |
| 84 | imass2 | ⊢ ( { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) | |
| 85 | 84 | 3ad2ant2 | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐹 “ { 𝑋 , 𝑛 } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 86 | 83 85 | eqsstrrd | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 87 | simp1r | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) | |
| 88 | 86 87 | sseqtrrd | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) ) |
| 89 | 59 71 88 | rspcedvdw | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ∧ { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) |
| 90 | 89 | 3exp | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) → ( { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 91 | 90 | 3adant3 | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( { 𝑋 , 𝑛 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 92 | 58 91 | sylbid | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 93 | 92 | 3exp | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑗 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) |
| 94 | 56 93 | syld | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) |
| 95 | 94 | 3exp | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝑋 ∈ 𝑉 → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) |
| 96 | 95 | com34 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝑋 ∈ 𝑉 → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) |
| 97 | 96 | 3exp | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 98 | 97 | com25 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 99 | 98 | expimpd | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 100 | 99 | exlimdv | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) ) |
| 101 | 100 | imp | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) ) ) |
| 102 | 101 | 3imp | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) ) ) |
| 103 | 102 | imp31 | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 104 | 103 | rexlimdva | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 105 | 50 104 | mpd | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 106 | 105 | ex | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 107 | 106 | com14 | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑘 ∈ ( Edg ‘ 𝐺 ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 108 | 107 | imp | ⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 109 | 108 | 3imp | ⊢ ( ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑋 , 𝑛 } ⊆ 𝑘 ∧ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) |
| 110 | 109 | olcd | ⊢ ( ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) ∧ { 𝑋 , 𝑛 } ⊆ 𝑘 ∧ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 111 | 110 | 3exp | ⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 112 | 111 | rexlimdva | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 113 | 112 | com12 | ⊢ ( ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 114 | 46 113 | jaoi | ⊢ ( ( 𝑛 = 𝑋 ∨ ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 ) → ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) ) |
| 115 | 114 | impcom | ⊢ ( ( ( 𝑛 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑋 ∨ ∃ 𝑘 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , 𝑛 } ⊆ 𝑘 ) ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 116 | 43 115 | sylbi | ⊢ ( 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 117 | 116 | impcom | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 118 | 117 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 119 | eqeq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 120 | preq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → { ( 𝐹 ‘ 𝑋 ) , 𝑥 } = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ) | |
| 121 | 120 | sseq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ↔ { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 122 | 121 | rexbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) |
| 123 | 119 122 | orbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑛 ) → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 124 | 123 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 125 | 124 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑛 ) } ⊆ 𝑒 ) ) ) |
| 126 | 118 125 | mpbird | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) |
| 127 | 38 41 126 | jca31 | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑥 ) → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) |
| 128 | 127 | ex | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 129 | 128 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 130 | 26 129 | syl3an1 | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 → ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 131 | 23 130 | impbid | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 132 | 131 | 3exp | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝑋 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) ) ) |
| 133 | 132 | impcom | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝑋 ∈ 𝑉 → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) ) |
| 134 | 133 | imp | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 135 | 16 17 | clnbgrel | ⊢ ( 𝑥 ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) |
| 136 | 135 | a1i | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐻 ) ) ∧ ( 𝑥 = ( 𝐹 ‘ 𝑋 ) ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐻 ) { ( 𝐹 ‘ 𝑋 ) , 𝑥 } ⊆ 𝑒 ) ) ) ) |
| 137 | 1 16 | grimf1o | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 138 | 137 72 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 Fn 𝑉 ) |
| 139 | 138 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐹 Fn 𝑉 ) |
| 140 | 1 | clnbgrssvtx | ⊢ ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ 𝑉 |
| 141 | 140 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ 𝑉 ) |
| 142 | fvelimab | ⊢ ( ( 𝐹 Fn 𝑉 ∧ ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ 𝑉 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) | |
| 143 | 139 141 142 | syl2an | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ↔ ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑥 ) ) |
| 144 | 134 136 143 | 3bitr4d | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) ↔ 𝑥 ∈ ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 145 | 144 | eqrdv | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 “ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |