This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a member N of the closed neighborhood of a vertex X in a graph G . (Contributed by AV, 9-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clnbgrel.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | clnbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clnbgrel.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | clnbgrcl | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → 𝑋 ∈ 𝑉 ) |
| 4 | 3 | pm4.71ri | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 5 | 1 2 | clnbgrval | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑋 ) = ( { 𝑋 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ 𝑁 ∈ ( { 𝑋 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ) ) |
| 7 | elun | ⊢ ( 𝑁 ∈ ( { 𝑋 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ↔ ( 𝑁 ∈ { 𝑋 } ∨ 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ) | |
| 8 | elsn2g | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ { 𝑋 } ↔ 𝑁 = 𝑋 ) ) | |
| 9 | preq2 | ⊢ ( 𝑛 = 𝑁 → { 𝑋 , 𝑛 } = { 𝑋 , 𝑁 } ) | |
| 10 | 9 | sseq1d | ⊢ ( 𝑛 = 𝑁 → ( { 𝑋 , 𝑛 } ⊆ 𝑒 ↔ { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 12 | 11 | elrab | ⊢ ( 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ↔ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 13 | 12 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ↔ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 14 | 8 13 | orbi12d | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑁 ∈ { 𝑋 } ∨ 𝑁 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ↔ ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 15 | 7 14 | bitrid | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ ( { 𝑋 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ↔ ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 16 | eleq1 | ⊢ ( 𝑁 = 𝑋 → ( 𝑁 ∈ 𝑉 ↔ 𝑋 ∈ 𝑉 ) ) | |
| 17 | 16 | biimparc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋 ) → 𝑁 ∈ 𝑉 ) |
| 18 | orc | ⊢ ( 𝑁 = 𝑋 → ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋 ) → ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 20 | 17 19 | jca | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 = 𝑋 ) → ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 21 | 20 | ex | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 = 𝑋 → ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 22 | olc | ⊢ ( ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 → ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) | |
| 23 | 22 | anim2i | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) → ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 24 | 23 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) → ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 25 | 21 24 | jaod | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) → ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 26 | orc | ⊢ ( 𝑁 = 𝑋 → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) | |
| 27 | 26 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 = 𝑋 → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 28 | olc | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) | |
| 29 | 28 | ex | ⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 31 | 27 30 | jaod | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 32 | 31 | expimpd | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) → ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 33 | 25 32 | impbid | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑁 = 𝑋 ∨ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ↔ ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 34 | 6 15 33 | 3bitrd | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 35 | 34 | pm5.32i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) |
| 36 | anass | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ) | |
| 37 | 36 | bicomi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ↔ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 38 | ancom | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) | |
| 39 | 37 38 | bianbi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 40 | 4 35 39 | 3bitri | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 = 𝑋 ∨ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |