This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for clnbgrgrim : For two isomorphic hypergraphs, if there is an edge connecting the image of a vertex of the first graph with a vertex of the second graph, the vertex of the second graph is the image of a neighbor of the vertex of the first graph. (Contributed by AV, 2-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clnbgrgrimlem.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| clnbgrgrimlem.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | ||
| Assertion | clnbgrgrimlem | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clnbgrgrimlem.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | clnbgrgrimlem.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | |
| 4 | 3 | eleq2i | ⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ( Edg ‘ 𝐻 ) ) |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 6 | 5 | uhgredgiedgb | ⊢ ( 𝐻 ∈ UHGraph → ( 𝐾 ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝐻 ∈ UHGraph → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 11 | sseq2 | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 13 | simp1 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) | |
| 14 | simpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑌 ∈ 𝑊 ) | |
| 15 | 13 14 | anim12i | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 16 | f1ocnvdm | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
| 18 | simpl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → 𝑋 ∈ 𝑉 ) | |
| 19 | 18 | adantl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑋 ∈ 𝑉 ) |
| 20 | 17 19 | jca | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
| 22 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 23 | 22 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 27 | simpl2l | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 28 | f1ocnvdm | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 29 | 27 28 | sylan | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 30 | 26 29 | jca | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 31 | 22 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 32 | 30 31 | syl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 34 | sseq2 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) → ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) | |
| 35 | 34 | adantl | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 36 | 2fveq3 | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) | |
| 37 | fveq2 | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) | |
| 38 | 37 | imaeq2d | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 39 | 36 38 | eqeq12d | ⊢ ( 𝑖 = ( ◡ 𝑗 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 40 | 39 | rspcv | ⊢ ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 42 | simpr | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 43 | simp1 | ⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) | |
| 44 | 42 43 | anim12i | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
| 46 | f1ocnvfv2 | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) = 𝑘 ) |
| 48 | 47 | fveqeq2d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 49 | sseq2 | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) | |
| 50 | 49 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 51 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 Fn 𝑉 ) | |
| 52 | 51 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝐹 Fn 𝑉 ) |
| 53 | simpr3l | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝑋 ∈ 𝑉 ) | |
| 54 | simpl | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) | |
| 55 | 14 | 3ad2ant3 | ⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → 𝑌 ∈ 𝑊 ) |
| 56 | 54 55 | anim12i | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 57 | 56 16 | syl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) |
| 58 | 52 53 57 | 3jca | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) ) |
| 60 | fnimapr | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ) → ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) = { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } ) |
| 62 | 56 | adantr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 63 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) | |
| 64 | 62 63 | syl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 65 | 64 | preq2d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) } = { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ) |
| 66 | 61 65 | eqtr2d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { ( 𝐹 ‘ 𝑋 ) , 𝑌 } = ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ) |
| 67 | 66 | sseq1d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 68 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) | |
| 69 | 68 | adantr | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
| 71 | 53 57 | prssd | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ) |
| 72 | 71 | adantr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ) |
| 73 | simpr2l | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → 𝐺 ∈ UHGraph ) | |
| 74 | 1 22 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
| 75 | 73 74 | sylan | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) |
| 76 | f1imass | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ⊆ 𝑉 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) | |
| 77 | 70 72 75 76 | syl12anc | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ↔ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 78 | 77 | biimpd | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 “ { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ) ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 79 | 67 78 | sylbid | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 81 | 50 80 | sylbid | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 82 | 81 | ex | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 83 | 48 82 | sylbid | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 84 | 41 83 | syld | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) ∧ ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 85 | 84 | ex | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 86 | 85 | com23 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 87 | 86 | 3exp2 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
| 88 | 87 | com25 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
| 89 | 88 | expimpd | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) ) ) ) |
| 90 | 89 | 3imp1 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 91 | 90 | imp | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( ◡ 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐺 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) ) |
| 92 | 29 91 | mpd | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) ) |
| 93 | 92 | imp | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ◡ 𝑗 ‘ 𝑘 ) ) ) |
| 94 | 33 35 93 | rspcedvd | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) |
| 95 | 94 | olcd | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ( ◡ 𝐹 ‘ 𝑌 ) = 𝑋 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) ) |
| 96 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 97 | 1 96 | clnbgrel | ⊢ ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ↔ ( ( ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( ( ◡ 𝐹 ‘ 𝑌 ) = 𝑋 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑋 , ( ◡ 𝐹 ‘ 𝑌 ) } ⊆ 𝑒 ) ) ) |
| 98 | 21 95 97 | sylanbrc | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 99 | 98 | ex | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 101 | 12 100 | sylbid | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 102 | 101 | ex | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 103 | 102 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) 𝐾 = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 104 | 10 103 | sylbid | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐾 ∈ 𝐸 → ( { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) |
| 105 | 104 | impd | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) |
| 106 | 105 | 3exp1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) ) |
| 107 | 106 | exlimdv | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) ) |
| 108 | 107 | imp | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) |
| 109 | 1 2 22 5 | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 110 | 108 109 | syl11 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) ) ) ) |
| 111 | 110 | 3imp1 | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ) |
| 112 | fveqeq2 | ⊢ ( 𝑛 = ( ◡ 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) ) | |
| 113 | 112 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) ∧ 𝑛 = ( ◡ 𝐹 ‘ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑛 ) = 𝑌 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) ) |
| 114 | 1 2 | grimf1o | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
| 115 | 114 14 | anim12i | ⊢ ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 116 | 115 | 3adant1 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 117 | 116 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ 𝑌 ∈ 𝑊 ) ) |
| 118 | 117 63 | syl | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 119 | 111 113 118 | rspcedvd | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 120 | 119 | ex | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) ) → ( ( 𝐾 ∈ 𝐸 ∧ { ( 𝐹 ‘ 𝑋 ) , 𝑌 } ⊆ 𝐾 ) → ∃ 𝑛 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) ( 𝐹 ‘ 𝑛 ) = 𝑌 ) ) |