This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgredgiedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom 𝐼 𝐸 = ( 𝐼 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgredgiedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 3 | 1 | edgiedgb | ⊢ ( Fun 𝐼 → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom 𝐼 𝐸 = ( 𝐼 ‘ 𝑥 ) ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom 𝐼 𝐸 = ( 𝐼 ‘ 𝑥 ) ) ) |