This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between hypergraphs map closed neighborhoods onto closed neighborhoods. (Contributed by AV, 2-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrgrim.v | |- V = ( Vtx ` G ) |
|
| Assertion | clnbgrgrim | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( H ClNeighbVtx ( F ` X ) ) = ( F " ( G ClNeighbVtx X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrgrim.v | |- V = ( Vtx ` G ) |
|
| 2 | fveqeq2 | |- ( n = X -> ( ( F ` n ) = ( F ` X ) <-> ( F ` X ) = ( F ` X ) ) ) |
|
| 3 | 1 | clnbgrvtxel | |- ( X e. V -> X e. ( G ClNeighbVtx X ) ) |
| 4 | 3 | 3ad2ant3 | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> X e. ( G ClNeighbVtx X ) ) |
| 5 | eqidd | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( F ` X ) = ( F ` X ) ) |
|
| 6 | 2 4 5 | rspcedvdw | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = ( F ` X ) ) |
| 7 | 6 | adantr | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = ( F ` X ) ) |
| 8 | eqeq2 | |- ( x = ( F ` X ) -> ( ( F ` n ) = x <-> ( F ` n ) = ( F ` X ) ) ) |
|
| 9 | 8 | rexbidv | |- ( x = ( F ` X ) -> ( E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = ( F ` X ) ) ) |
| 10 | 7 9 | syl5ibrcom | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( x = ( F ` X ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 11 | simpl2 | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
|
| 12 | simpl1 | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> F e. ( G GraphIso H ) ) |
|
| 13 | simp3 | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> X e. V ) |
|
| 14 | simpl | |- ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) -> x e. ( Vtx ` H ) ) |
|
| 15 | 13 14 | anim12i | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( X e. V /\ x e. ( Vtx ` H ) ) ) |
| 16 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 17 | eqid | |- ( Edg ` H ) = ( Edg ` H ) |
|
| 18 | 1 16 17 | clnbgrgrimlem | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ x e. ( Vtx ` H ) ) ) -> ( ( e e. ( Edg ` H ) /\ { ( F ` X ) , x } C_ e ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 19 | 11 12 15 18 | syl3anc | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( ( e e. ( Edg ` H ) /\ { ( F ` X ) , x } C_ e ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 20 | 19 | expd | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( e e. ( Edg ` H ) -> ( { ( F ` X ) , x } C_ e -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) ) |
| 21 | 20 | rexlimdv | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 22 | 10 21 | jaod | |- ( ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) ) -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 23 | 22 | expimpd | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 24 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 25 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 26 | 1 16 24 25 | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 27 | f1of | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V --> ( Vtx ` H ) ) |
|
| 28 | 27 | adantr | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> F : V --> ( Vtx ` H ) ) |
| 29 | 28 | 3ad2ant1 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> F : V --> ( Vtx ` H ) ) |
| 30 | 29 | ad2antrr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> F : V --> ( Vtx ` H ) ) |
| 31 | 1 | clnbgrisvtx | |- ( n e. ( G ClNeighbVtx X ) -> n e. V ) |
| 32 | 31 | adantl | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) -> n e. V ) |
| 33 | 32 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> n e. V ) |
| 34 | 30 33 | ffvelcdmd | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( F ` n ) e. ( Vtx ` H ) ) |
| 35 | eleq1 | |- ( x = ( F ` n ) -> ( x e. ( Vtx ` H ) <-> ( F ` n ) e. ( Vtx ` H ) ) ) |
|
| 36 | 35 | eqcoms | |- ( ( F ` n ) = x -> ( x e. ( Vtx ` H ) <-> ( F ` n ) e. ( Vtx ` H ) ) ) |
| 37 | 36 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( x e. ( Vtx ` H ) <-> ( F ` n ) e. ( Vtx ` H ) ) ) |
| 38 | 34 37 | mpbird | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> x e. ( Vtx ` H ) ) |
| 39 | simp3 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> X e. V ) |
|
| 40 | 29 39 | ffvelcdmd | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( F ` X ) e. ( Vtx ` H ) ) |
| 41 | 40 | ad2antrr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( F ` X ) e. ( Vtx ` H ) ) |
| 42 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 43 | 1 42 | clnbgrel | |- ( n e. ( G ClNeighbVtx X ) <-> ( ( n e. V /\ X e. V ) /\ ( n = X \/ E. k e. ( Edg ` G ) { X , n } C_ k ) ) ) |
| 44 | fveq2 | |- ( n = X -> ( F ` n ) = ( F ` X ) ) |
|
| 45 | 44 | orcd | |- ( n = X -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 46 | 45 | 2a1d | |- ( n = X -> ( ( n e. V /\ X e. V ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 47 | 24 | uhgredgiedgb | |- ( G e. UHGraph -> ( k e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) ) |
| 48 | 47 | adantr | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( k e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) ) |
| 49 | 48 | 3ad2ant2 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( k e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) ) |
| 50 | 49 | biimpa | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) -> E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) ) |
| 51 | 2fveq3 | |- ( i = j -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( ( iEdg ` H ) ` ( g ` j ) ) ) |
|
| 52 | fveq2 | |- ( i = j -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` j ) ) |
|
| 53 | 52 | imaeq2d | |- ( i = j -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 54 | 51 53 | eqeq12d | |- ( i = j -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) ) |
| 55 | 54 | rspcv | |- ( j e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) ) |
| 56 | 55 | 3ad2ant3 | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) ) |
| 57 | sseq2 | |- ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k <-> { X , n } C_ ( ( iEdg ` G ) ` j ) ) ) |
|
| 58 | 57 | 3ad2ant3 | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) /\ k = ( ( iEdg ` G ) ` j ) ) -> ( { X , n } C_ k <-> { X , n } C_ ( ( iEdg ` G ) ` j ) ) ) |
| 59 | sseq2 | |- ( e = ( ( iEdg ` H ) ` ( g ` j ) ) -> ( { ( F ` X ) , ( F ` n ) } C_ e <-> { ( F ` X ) , ( F ` n ) } C_ ( ( iEdg ` H ) ` ( g ` j ) ) ) ) |
|
| 60 | 25 | uhgrfun | |- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 61 | 60 | adantl | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> Fun ( iEdg ` H ) ) |
| 62 | 61 | 3ad2ant3 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> Fun ( iEdg ` H ) ) |
| 63 | f1of | |- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
|
| 64 | 63 | adantl | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> g : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 65 | 64 | 3ad2ant1 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> g : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 66 | 65 | ffvelcdmda | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ j e. dom ( iEdg ` G ) ) -> ( g ` j ) e. dom ( iEdg ` H ) ) |
| 67 | 25 | iedgedg | |- ( ( Fun ( iEdg ` H ) /\ ( g ` j ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 68 | 62 66 67 | syl2an2r | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ j e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 69 | 68 | 3adant2 | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 70 | 69 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 71 | 70 | 3ad2ant1 | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) e. ( Edg ` H ) ) |
| 72 | f1ofn | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> F Fn V ) |
|
| 73 | 72 | adantr | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> F Fn V ) |
| 74 | 73 | 3ad2ant1 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> F Fn V ) |
| 75 | 74 | 3ad2ant1 | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> F Fn V ) |
| 76 | 75 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) -> F Fn V ) |
| 77 | pm3.22 | |- ( ( n e. V /\ X e. V ) -> ( X e. V /\ n e. V ) ) |
|
| 78 | 76 77 | anim12i | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ ( n e. V /\ X e. V ) ) -> ( F Fn V /\ ( X e. V /\ n e. V ) ) ) |
| 79 | 78 | 3adant2 | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F Fn V /\ ( X e. V /\ n e. V ) ) ) |
| 80 | 3anass | |- ( ( F Fn V /\ X e. V /\ n e. V ) <-> ( F Fn V /\ ( X e. V /\ n e. V ) ) ) |
|
| 81 | 79 80 | sylibr | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F Fn V /\ X e. V /\ n e. V ) ) |
| 82 | fnimapr | |- ( ( F Fn V /\ X e. V /\ n e. V ) -> ( F " { X , n } ) = { ( F ` X ) , ( F ` n ) } ) |
|
| 83 | 81 82 | syl | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F " { X , n } ) = { ( F ` X ) , ( F ` n ) } ) |
| 84 | imass2 | |- ( { X , n } C_ ( ( iEdg ` G ) ` j ) -> ( F " { X , n } ) C_ ( F " ( ( iEdg ` G ) ` j ) ) ) |
|
| 85 | 84 | 3ad2ant2 | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( F " { X , n } ) C_ ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 86 | 83 85 | eqsstrrd | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> { ( F ` X ) , ( F ` n ) } C_ ( F " ( ( iEdg ` G ) ` j ) ) ) |
| 87 | simp1r | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) |
|
| 88 | 86 87 | sseqtrrd | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> { ( F ` X ) , ( F ` n ) } C_ ( ( iEdg ` H ) ` ( g ` j ) ) ) |
| 89 | 59 71 88 | rspcedvdw | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) /\ { X , n } C_ ( ( iEdg ` G ) ` j ) /\ ( n e. V /\ X e. V ) ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) |
| 90 | 89 | 3exp | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) ) -> ( { X , n } C_ ( ( iEdg ` G ) ` j ) -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 91 | 90 | 3adant3 | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) /\ k = ( ( iEdg ` G ) ` j ) ) -> ( { X , n } C_ ( ( iEdg ` G ) ` j ) -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 92 | 58 91 | sylbid | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) /\ k = ( ( iEdg ` G ) ` j ) ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 93 | 92 | 3exp | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( g ` j ) ) = ( F " ( ( iEdg ` G ) ` j ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) |
| 94 | 56 93 | syld | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ X e. V /\ j e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) |
| 95 | 94 | 3exp | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> ( X e. V -> ( j e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) |
| 96 | 95 | com34 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ k e. ( Edg ` G ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> ( X e. V -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) |
| 97 | 96 | 3exp | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( k e. ( Edg ` G ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 98 | 97 | com25 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 99 | 98 | expimpd | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 100 | 99 | exlimdv | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) ) |
| 101 | 100 | imp | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) ) ) |
| 102 | 101 | 3imp | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( k e. ( Edg ` G ) -> ( j e. dom ( iEdg ` G ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) ) ) |
| 103 | 102 | imp31 | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) /\ j e. dom ( iEdg ` G ) ) -> ( k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 104 | 103 | rexlimdva | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( E. j e. dom ( iEdg ` G ) k = ( ( iEdg ` G ) ` j ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 105 | 50 104 | mpd | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 106 | 105 | ex | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( k e. ( Edg ` G ) -> ( { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 107 | 106 | com14 | |- ( ( n e. V /\ X e. V ) -> ( k e. ( Edg ` G ) -> ( { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 108 | 107 | imp | |- ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 109 | 108 | 3imp | |- ( ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) /\ { X , n } C_ k /\ ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) ) -> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) |
| 110 | 109 | olcd | |- ( ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) /\ { X , n } C_ k /\ ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 111 | 110 | 3exp | |- ( ( ( n e. V /\ X e. V ) /\ k e. ( Edg ` G ) ) -> ( { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 112 | 111 | rexlimdva | |- ( ( n e. V /\ X e. V ) -> ( E. k e. ( Edg ` G ) { X , n } C_ k -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 113 | 112 | com12 | |- ( E. k e. ( Edg ` G ) { X , n } C_ k -> ( ( n e. V /\ X e. V ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 114 | 46 113 | jaoi | |- ( ( n = X \/ E. k e. ( Edg ` G ) { X , n } C_ k ) -> ( ( n e. V /\ X e. V ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) ) |
| 115 | 114 | impcom | |- ( ( ( n e. V /\ X e. V ) /\ ( n = X \/ E. k e. ( Edg ` G ) { X , n } C_ k ) ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 116 | 43 115 | sylbi | |- ( n e. ( G ClNeighbVtx X ) -> ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 117 | 116 | impcom | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 118 | 117 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 119 | eqeq1 | |- ( x = ( F ` n ) -> ( x = ( F ` X ) <-> ( F ` n ) = ( F ` X ) ) ) |
|
| 120 | preq2 | |- ( x = ( F ` n ) -> { ( F ` X ) , x } = { ( F ` X ) , ( F ` n ) } ) |
|
| 121 | 120 | sseq1d | |- ( x = ( F ` n ) -> ( { ( F ` X ) , x } C_ e <-> { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 122 | 121 | rexbidv | |- ( x = ( F ` n ) -> ( E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e <-> E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) |
| 123 | 119 122 | orbi12d | |- ( x = ( F ` n ) -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) <-> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 124 | 123 | eqcoms | |- ( ( F ` n ) = x -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) <-> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 125 | 124 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) <-> ( ( F ` n ) = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , ( F ` n ) } C_ e ) ) ) |
| 126 | 118 125 | mpbird | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) |
| 127 | 38 41 126 | jca31 | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) /\ ( F ` n ) = x ) -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) |
| 128 | 127 | ex | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) /\ n e. ( G ClNeighbVtx X ) ) -> ( ( F ` n ) = x -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 129 | 128 | rexlimdva | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 130 | 26 129 | syl3an1 | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x -> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 131 | 23 130 | impbid | |- ( ( F e. ( G GraphIso H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ X e. V ) -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 132 | 131 | 3exp | |- ( F e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( X e. V -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) ) ) |
| 133 | 132 | impcom | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) -> ( X e. V -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) ) |
| 134 | 133 | imp | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 135 | 16 17 | clnbgrel | |- ( x e. ( H ClNeighbVtx ( F ` X ) ) <-> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) |
| 136 | 135 | a1i | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( x e. ( H ClNeighbVtx ( F ` X ) ) <-> ( ( x e. ( Vtx ` H ) /\ ( F ` X ) e. ( Vtx ` H ) ) /\ ( x = ( F ` X ) \/ E. e e. ( Edg ` H ) { ( F ` X ) , x } C_ e ) ) ) ) |
| 137 | 1 16 | grimf1o | |- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> ( Vtx ` H ) ) |
| 138 | 137 72 | syl | |- ( F e. ( G GraphIso H ) -> F Fn V ) |
| 139 | 138 | adantl | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) -> F Fn V ) |
| 140 | 1 | clnbgrssvtx | |- ( G ClNeighbVtx X ) C_ V |
| 141 | 140 | a1i | |- ( X e. V -> ( G ClNeighbVtx X ) C_ V ) |
| 142 | fvelimab | |- ( ( F Fn V /\ ( G ClNeighbVtx X ) C_ V ) -> ( x e. ( F " ( G ClNeighbVtx X ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
|
| 143 | 139 141 142 | syl2an | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( x e. ( F " ( G ClNeighbVtx X ) ) <-> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = x ) ) |
| 144 | 134 136 143 | 3bitr4d | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( x e. ( H ClNeighbVtx ( F ` X ) ) <-> x e. ( F " ( G ClNeighbVtx X ) ) ) ) |
| 145 | 144 | eqrdv | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) ) /\ X e. V ) -> ( H ClNeighbVtx ( F ` X ) ) = ( F " ( G ClNeighbVtx X ) ) ) |