This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| grimprop.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| grimprop.d | ⊢ 𝐷 = ( iEdg ‘ 𝐻 ) | ||
| Assertion | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | grimprop.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | grimprop.d | ⊢ 𝐷 = ( iEdg ‘ 𝐻 ) | |
| 5 | grimdmrel | ⊢ Rel dom GraphIso | |
| 6 | 5 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 7 | 6 | simpld | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐺 ∈ V ) |
| 8 | 6 | simprd | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐻 ∈ V ) |
| 9 | id | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 10 | 7 8 9 | 3jca | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
| 11 | 1 2 3 4 | isgrim | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 12 | 11 | biimpd | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 13 | 10 12 | mpcom | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |