This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two isomorphic graphs, a set of vertices is an edge in one graph iff its image by a graph isomorphism is an edge of the other graph. (Contributed by AV, 7-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grimedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| grimedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | ||
| Assertion | grimedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grimedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | grimedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 7 | 1 4 5 6 | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 8 | 2 | eleq2i | ⊢ ( 𝐾 ∈ 𝐼 ↔ 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
| 9 | 5 | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 10 | 9 | ad2antll | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 11 | 8 10 | bitrid | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾 ∈ 𝐼 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 12 | 2fveq3 | ⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ) | |
| 13 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 14 | 13 | imaeq2d | ⊢ ( 𝑖 = 𝑘 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑖 = 𝑘 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 16 | 15 | rspcv | ⊢ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 18 | 6 | uhgrfun | ⊢ ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 20 | f1of | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 22 | simplr | ⊢ ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 23 | 21 22 | ffvelcdmd | ⊢ ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 24 | 6 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 25 | 24 3 | eleqtrrdi | ⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐸 ) |
| 26 | 19 23 25 | syl2an2r | ⊢ ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐸 ) |
| 27 | eleq1 | ⊢ ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐸 ) ) | |
| 28 | 27 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐸 ) ) |
| 29 | 26 28 | syl5ibrcom | ⊢ ( ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) |
| 30 | 29 | ex | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) ) |
| 31 | 30 | com23 | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) ) |
| 32 | 17 31 | syld | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) ) |
| 33 | 32 | com13 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) ) |
| 34 | 33 | impr | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) |
| 35 | 34 | impl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) |
| 37 | imaeq2 | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) |
| 39 | 38 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐸 ) ) |
| 40 | 36 39 | mpbird | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐸 ) |
| 41 | 1 5 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) |
| 42 | 41 | ex | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) ) |
| 43 | 42 | ad2antll | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) ) |
| 44 | 43 | imp | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) |
| 46 | sseq1 | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐾 ⊆ 𝑉 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) ) | |
| 47 | 46 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐾 ⊆ 𝑉 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑉 ) ) |
| 48 | 45 47 | mpbird | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → 𝐾 ⊆ 𝑉 ) |
| 49 | 40 48 | jca | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) |
| 50 | 49 | ex | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |
| 51 | 50 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |
| 52 | 11 51 | sylbid | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾 ∈ 𝐼 → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |
| 53 | 3 | eleq2i | ⊢ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ↔ ( 𝐹 “ 𝐾 ) ∈ ( Edg ‘ 𝐻 ) ) |
| 54 | 6 | uhgredgiedgb | ⊢ ( 𝐻 ∈ UHGraph → ( ( 𝐹 “ 𝐾 ) ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 55 | 54 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( 𝐹 “ 𝐾 ) ∈ ( Edg ‘ 𝐻 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 56 | 53 55 | bitrid | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 57 | f1ofo | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 58 | 57 | adantr | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) ) |
| 60 | foelrn | ⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) ) | |
| 61 | 59 60 | sylan | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) ) |
| 62 | 2fveq3 | ⊢ ( 𝑖 = 𝑙 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) | |
| 63 | fveq2 | ⊢ ( 𝑖 = 𝑙 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) | |
| 64 | 63 | imaeq2d | ⊢ ( 𝑖 = 𝑙 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) |
| 65 | 62 64 | eqeq12d | ⊢ ( 𝑖 = 𝑙 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ) |
| 66 | 65 | rspcv | ⊢ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ) |
| 67 | 66 | adantl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ) |
| 68 | fveq2 | ⊢ ( 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) | |
| 69 | 68 | eqeq2d | ⊢ ( 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) ) |
| 70 | 69 | ad2antll | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ↔ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) ) |
| 71 | simpl | ⊢ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → 𝐻 ∈ UHGraph ) | |
| 72 | 71 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → 𝐻 ∈ UHGraph ) |
| 73 | simplrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) | |
| 74 | eleq1 | ⊢ ( 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑗 ‘ 𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) ) | |
| 75 | 74 | ad2antll | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ↔ ( 𝑗 ‘ 𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) ) |
| 76 | 73 75 | mpbid | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( 𝑗 ‘ 𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 77 | 4 6 | uhgrss | ⊢ ( ( 𝐻 ∈ UHGraph ∧ ( 𝑗 ‘ 𝑙 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 78 | 72 76 77 | syl2an2r | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 79 | 78 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 80 | sseq1 | ⊢ ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) → ( ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) ) | |
| 81 | 80 | adantl | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ⊆ ( Vtx ‘ 𝐻 ) ) ) |
| 82 | 79 81 | mpbird | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) → ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 83 | eqeq2 | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ↔ ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ) | |
| 84 | 83 | adantl | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ↔ ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ) |
| 85 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) | |
| 86 | 85 | ad3antrrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 87 | 86 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾 ⊆ 𝑉 ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 88 | simplr | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → 𝐺 ∈ UHGraph ) | |
| 89 | 88 | adantl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → 𝐺 ∈ UHGraph ) |
| 90 | simpl | ⊢ ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) → 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 91 | 1 5 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) |
| 92 | 89 90 91 | syl2an | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) |
| 94 | 93 | anim1ci | ⊢ ( ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾 ⊆ 𝑉 ) → ( 𝐾 ⊆ 𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) ) |
| 95 | f1imaeq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐾 ⊆ 𝑉 ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ⊆ 𝑉 ) ) → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ↔ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) | |
| 96 | 87 94 95 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾 ⊆ 𝑉 ) → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ↔ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) |
| 97 | 5 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 98 | 97 | ad2antlr | ⊢ ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 99 | 98 | adantl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 100 | 5 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 101 | 99 90 100 | syl2an | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ ( Edg ‘ 𝐺 ) ) |
| 102 | 101 2 | eleqtrrdi | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ 𝐼 ) |
| 103 | eleq1 | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) → ( 𝐾 ∈ 𝐼 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ∈ 𝐼 ) ) | |
| 104 | 102 103 | syl5ibrcom | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) → 𝐾 ∈ 𝐼 ) ) |
| 105 | 104 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾 ⊆ 𝑉 ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) → 𝐾 ∈ 𝐼 ) ) |
| 106 | 96 105 | sylbid | ⊢ ( ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) ∧ 𝐾 ⊆ 𝑉 ) → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → 𝐾 ∈ 𝐼 ) ) |
| 107 | 106 | ex | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) → ( 𝐾 ⊆ 𝑉 → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → 𝐾 ∈ 𝐼 ) ) ) |
| 108 | 107 | com23 | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) |
| 109 | 108 | ex | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 110 | 109 | com23 | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 111 | 84 110 | sylbid | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) → ( ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 112 | 111 | imp | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) ⊆ ( Vtx ‘ 𝐻 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) |
| 113 | 82 112 | mpd | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) |
| 114 | 113 | exp31 | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 115 | 114 | com23 | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 116 | 70 115 | sylbid | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 117 | 116 | exp31 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) ) ) |
| 118 | 117 | com23 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) ) ) |
| 119 | 118 | com24 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) ) ) |
| 120 | 119 | 3imp | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → ( ( 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑘 = ( 𝑗 ‘ 𝑙 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 121 | 120 | expdimp | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑙 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑙 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 122 | 67 121 | syl5d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) ∧ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 123 | 122 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) ∧ ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 124 | 123 | 3exp | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) ) ) |
| 125 | 124 | com25 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) ) ) |
| 126 | 125 | impr | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) ) |
| 127 | 126 | impl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ∃ 𝑙 ∈ dom ( iEdg ‘ 𝐺 ) 𝑘 = ( 𝑗 ‘ 𝑙 ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) ) |
| 128 | 61 127 | mpd | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) |
| 129 | 128 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐻 ) ( 𝐹 “ 𝐾 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑘 ) → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) |
| 130 | 56 129 | sylbid | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 → ( 𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼 ) ) ) |
| 131 | 130 | impd | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) → 𝐾 ∈ 𝐼 ) ) |
| 132 | 52 131 | impbid | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ∧ ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |
| 133 | 132 | exp31 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) ) ) |
| 134 | 133 | exlimdv | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) ) ) |
| 135 | 134 | imp | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) ) |
| 136 | 7 135 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) ) |
| 137 | 136 | expd | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐻 ∈ UHGraph → ( 𝐺 ∈ UHGraph → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) ) ) |
| 138 | 137 | com13 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐻 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) ) ) |
| 139 | 138 | 3imp | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |