This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *3.22 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 13-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm3.22 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝜓 ∧ 𝜑 ) → ( 𝜓 ∧ 𝜑 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 ∧ 𝜑 ) ) |