This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Similar to ultrafilters ( uffclsflim ), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cfilfcls.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| cfilfcls.2 | ⊢ 𝑋 = dom dom 𝐷 | ||
| Assertion | cfilfcls | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐽 fClus 𝐹 ) = ( 𝐽 fLim 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfilfcls.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | cfilfcls.2 | ⊢ 𝑋 = dom dom 𝐷 | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | fclselbas | ⊢ ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 6 | df-cfil | ⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) | |
| 7 | 6 | mptrcl | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 8 | xmetunirn | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 10 | 2 | fveq2i | ⊢ ( ∞Met ‘ 𝑋 ) = ( ∞Met ‘ dom dom 𝐷 ) |
| 11 | 9 10 | eleqtrrdi | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 13 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 17 | 5 16 | eleqtrrd | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑥 ∈ 𝑋 ) |
| 18 | 1 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) |
| 19 | 18 | 3expb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) |
| 20 | 12 19 | sylan | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) |
| 21 | cfilfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 22 | 11 21 | mpancom | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 25 | 12 | adantr | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 26 | simpll | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) | |
| 27 | rphalfcl | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 29 | rphalfcl | ⊢ ( ( 𝑟 / 2 ) ∈ ℝ+ → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) |
| 31 | cfil3i | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) | |
| 32 | 25 26 30 31 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) |
| 33 | 23 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 34 | simprr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) | |
| 35 | 25 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 36 | 17 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → 𝑥 ∈ 𝑋 ) |
| 37 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 38 | 37 | ad2antlr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → 𝑟 ∈ ℝ* ) |
| 39 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ) | |
| 40 | 35 36 38 39 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ) |
| 41 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) | |
| 42 | 28 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 43 | 42 | rpxrd | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 44 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 45 | 35 36 43 44 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 46 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 47 | 35 36 42 46 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 48 | fclsopni | ⊢ ( ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ∧ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ≠ ∅ ) | |
| 49 | 41 45 47 34 48 | syl13anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ≠ ∅ ) |
| 50 | n0 | ⊢ ( ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) | |
| 51 | 49 50 | sylib | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ∃ 𝑧 𝑧 ∈ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 52 | elin | ⊢ ( 𝑧 ∈ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ↔ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) | |
| 53 | 35 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 54 | simplrl | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑦 ∈ 𝑋 ) | |
| 55 | 42 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 56 | 55 | rpred | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 57 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) | |
| 58 | blhalf | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 𝑟 / 2 ) ∈ ℝ ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 59 | 53 54 56 57 58 | syl22anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 60 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ 𝑋 ) | |
| 61 | 35 36 43 60 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ 𝑋 ) |
| 62 | 61 | sselda | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → 𝑧 ∈ 𝑋 ) |
| 63 | 62 | adantrr | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑧 ∈ 𝑋 ) |
| 64 | simpllr | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 65 | 64 | rpred | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑟 ∈ ℝ ) |
| 66 | simprl | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 67 | 55 | rpxrd | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 68 | 36 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑥 ∈ 𝑋 ) |
| 69 | blcom | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ 𝑥 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) | |
| 70 | 53 67 68 63 69 | syl22anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ 𝑥 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 71 | 66 70 | mpbid | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → 𝑥 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 72 | blhalf | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ ∧ 𝑥 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 73 | 53 63 65 71 72 | syl22anc | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 74 | 59 73 | sstrd | ⊢ ( ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) ∧ ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 75 | 74 | ex | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( ( 𝑧 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∧ 𝑧 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 76 | 52 75 | biimtrid | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑧 ∈ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 77 | 76 | exlimdv | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( ∃ 𝑧 𝑧 ∈ ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 78 | 51 77 | mpd | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 79 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐹 ) | |
| 80 | 33 34 40 78 79 | syl13anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( ball ‘ 𝐷 ) ( ( 𝑟 / 2 ) / 2 ) ) ∈ 𝐹 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐹 ) |
| 81 | 32 80 | rexlimddv | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐹 ) |
| 82 | 81 | ad2ant2r | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐹 ) |
| 83 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ⊆ 𝑋 ) | |
| 84 | 83 | adantrr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 85 | 14 84 | sylan | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 86 | 85 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 87 | simprr | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) | |
| 88 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) | |
| 89 | 24 82 86 87 88 | syl13anc | ⊢ ( ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) |
| 90 | 20 89 | rexlimddv | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) |
| 91 | 90 | expr | ⊢ ( ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 92 | 91 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 93 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) | |
| 94 | 14 23 93 | syl2anc | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 95 | 17 92 94 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 96 | 95 | ex | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 97 | 96 | ssrdv | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐽 fClus 𝐹 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |
| 98 | flimfcls | ⊢ ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) | |
| 99 | 98 | a1i | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| 100 | 97 99 | eqssd | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐽 fClus 𝐹 ) = ( 𝐽 fLim 𝐹 ) ) |