This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffclsflim | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 fClus 𝐹 ) = ( 𝐽 fLim 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | fclsfnflim | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∃ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∃ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) |
| 4 | 3 | biimpa | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → ∃ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) |
| 5 | simprrr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) | |
| 6 | simpll | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) | |
| 7 | simprl | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 8 | simprrl | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝐹 ⊆ 𝑓 ) | |
| 9 | ufilmax | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) → 𝐹 = 𝑓 ) | |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝐹 = 𝑓 ) |
| 11 | 10 | oveq2d | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( 𝐽 fLim 𝐹 ) = ( 𝐽 fLim 𝑓 ) ) |
| 12 | 5 11 | eleqtrrd | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 13 | 4 12 | rexlimddv | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 14 | 13 | ex | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 fClus 𝐹 ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 15 | 14 | ssrdv | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 fClus 𝐹 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |
| 16 | flimfcls | ⊢ ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) | |
| 17 | 16 | a1i | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| 18 | 15 17 | eqssd | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 fClus 𝐹 ) = ( 𝐽 fLim 𝐹 ) ) |