This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | caufval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cau | ⊢ Cau = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) | |
| 2 | dmeq | ⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) | |
| 3 | 2 | dmeqd | ⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
| 4 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 5 | 4 | fdmd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 6 | 5 | dmeqd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
| 7 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = 𝑋 ) |
| 9 | 3 8 | sylan9eqr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( dom dom 𝑑 ↑pm ℂ ) = ( 𝑋 ↑pm ℂ ) ) |
| 11 | simpr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ball ‘ 𝑑 ) = ( ball ‘ 𝐷 ) ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 14 | 13 | feq3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) ↔ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 15 | 14 | rexbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
| 17 | 10 16 | rabeqbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝑑 ) 𝑥 ) } = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) |
| 18 | fvssunirn | ⊢ ( ∞Met ‘ 𝑋 ) ⊆ ∪ ran ∞Met | |
| 19 | 18 | sseli | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 20 | ovex | ⊢ ( 𝑋 ↑pm ℂ ) ∈ V | |
| 21 | 20 | rabex | ⊢ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ∈ V ) |
| 23 | 1 17 19 22 | fvmptd2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) |