This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy filters on a given extended metric space. A Cauchy filter is a filter on the set such that for every 0 < x there is an element of the filter whose metric diameter is less than x . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cfil | ⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccfil | ⊢ CauFil | |
| 1 | vd | ⊢ 𝑑 | |
| 2 | cxmet | ⊢ ∞Met | |
| 3 | 2 | crn | ⊢ ran ∞Met |
| 4 | 3 | cuni | ⊢ ∪ ran ∞Met |
| 5 | vf | ⊢ 𝑓 | |
| 6 | cfil | ⊢ Fil | |
| 7 | 1 | cv | ⊢ 𝑑 |
| 8 | 7 | cdm | ⊢ dom 𝑑 |
| 9 | 8 | cdm | ⊢ dom dom 𝑑 |
| 10 | 9 6 | cfv | ⊢ ( Fil ‘ dom dom 𝑑 ) |
| 11 | vx | ⊢ 𝑥 | |
| 12 | crp | ⊢ ℝ+ | |
| 13 | vy | ⊢ 𝑦 | |
| 14 | 5 | cv | ⊢ 𝑓 |
| 15 | 13 | cv | ⊢ 𝑦 |
| 16 | 15 15 | cxp | ⊢ ( 𝑦 × 𝑦 ) |
| 17 | 7 16 | cima | ⊢ ( 𝑑 “ ( 𝑦 × 𝑦 ) ) |
| 18 | cc0 | ⊢ 0 | |
| 19 | cico | ⊢ [,) | |
| 20 | 11 | cv | ⊢ 𝑥 |
| 21 | 18 20 19 | co | ⊢ ( 0 [,) 𝑥 ) |
| 22 | 17 21 | wss | ⊢ ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 23 | 22 13 14 | wrex | ⊢ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 24 | 23 11 12 | wral | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 25 | 24 5 10 | crab | ⊢ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } |
| 26 | 1 4 25 | cmpt | ⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |
| 27 | 0 26 | wceq | ⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) |