This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfil3i | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfili | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑠 ∈ 𝐹 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑠 ∈ 𝐹 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) |
| 3 | cfilfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 5 | fileln0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ≠ ∅ ) | |
| 6 | 4 5 | sylan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ≠ ∅ ) |
| 7 | r19.2z | ⊢ ( ( 𝑠 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) → ∃ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) | |
| 8 | 7 | ex | ⊢ ( 𝑠 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) |
| 10 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ 𝑋 ) | |
| 11 | 4 10 | sylan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ 𝑋 ) |
| 12 | ssrexv | ⊢ ( 𝑠 ⊆ 𝑋 → ( ∃ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( ∃ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) |
| 14 | dfss3 | ⊢ ( 𝑠 ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ∀ 𝑦 ∈ 𝑠 𝑦 ∈ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ) | |
| 15 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ+ ) | |
| 18 | 17 | rpxrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ* ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → 𝑅 ∈ ℝ* ) |
| 20 | simplr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → 𝑥 ∈ 𝑋 ) | |
| 21 | 11 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑠 ⊆ 𝑋 ) |
| 22 | 21 | sselda | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ 𝑋 ) |
| 23 | elbl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) | |
| 24 | 16 19 20 22 23 | syl22anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑠 ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) |
| 25 | 24 | ralbidva | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑠 𝑦 ∈ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) |
| 26 | 14 25 | bitrid | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑠 ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 ) ) |
| 27 | 4 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 28 | simplr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑠 ∈ 𝐹 ) | |
| 29 | 15 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 30 | simpr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 31 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ) | |
| 32 | 29 30 18 31 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ) |
| 33 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑠 ∈ 𝐹 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ∧ 𝑠 ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) | |
| 34 | 33 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑠 ∈ 𝐹 → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 → ( 𝑠 ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) ) ) ) |
| 35 | 27 28 32 34 | syl3c | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑠 ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) ) |
| 36 | 26 35 | sylbird | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) ) |
| 37 | 36 | reximdva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) ) |
| 38 | 9 13 37 | 3syld | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) ) |
| 39 | 38 | rexlimdva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑠 ∈ 𝐹 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 𝐷 𝑦 ) < 𝑅 → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) ) |
| 40 | 2 39 | mpd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑥 ( ball ‘ 𝐷 ) 𝑅 ) ∈ 𝐹 ) |