This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetunirn | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∈ V | |
| 2 | 1 | rabex | ⊢ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ∈ V |
| 3 | df-xmet | ⊢ ∞Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) | |
| 4 | 2 3 | fnmpti | ⊢ ∞Met Fn V |
| 5 | fnunirn | ⊢ ( ∞Met Fn V → ( 𝐷 ∈ ∪ ran ∞Met ↔ ∃ 𝑥 ∈ V 𝐷 ∈ ( ∞Met ‘ 𝑥 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ ∃ 𝑥 ∈ V 𝐷 ∈ ( ∞Met ‘ 𝑥 ) ) |
| 7 | id | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ 𝑥 ) ) | |
| 8 | xmetdmdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝑥 = dom dom 𝐷 ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → ( ∞Met ‘ 𝑥 ) = ( ∞Met ‘ dom dom 𝐷 ) ) |
| 10 | 7 9 | eleqtrd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 11 | 10 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ V 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 12 | 6 11 | sylbi | ⊢ ( 𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 13 | fvssunirn | ⊢ ( ∞Met ‘ dom dom 𝐷 ) ⊆ ∪ ran ∞Met | |
| 14 | 13 | sseli | ⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 15 | 12 14 | impbii | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |