This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 2 | fmval | ⊢ ( ( 𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
| 4 | 3 | eleq1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 5 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 6 | simp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) | |
| 7 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 8 | 1 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
| 9 | eqid | ⊢ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) | |
| 10 | 9 | fbasrn | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ dom ∞Met ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 11 | 6 7 8 10 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 12 | fgcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) | |
| 13 | 5 11 12 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 14 | imassrn | ⊢ ( 𝐹 “ 𝑦 ) ⊆ ran 𝐹 | |
| 15 | frn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ran 𝐹 ⊆ 𝑋 ) | |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran 𝐹 ⊆ 𝑋 ) |
| 17 | 14 16 | sstrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 18 | 8 17 | ssexd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 “ 𝑦 ) ∈ V ) |
| 19 | 18 | ralrimivw | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∀ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ∈ V ) |
| 20 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) | |
| 21 | raleq | ⊢ ( 𝑠 = ( 𝐹 “ 𝑦 ) → ( ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) | |
| 22 | 21 | raleqbi1dv | ⊢ ( 𝑠 = ( 𝐹 “ 𝑦 ) → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 23 | 20 22 | rexrnmptw | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ∈ V → ( ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 24 | 19 23 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 25 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 26 | 25 | ffnd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 Fn 𝑌 ) |
| 27 | fbelss | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝑌 ) | |
| 28 | 6 27 | sylan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝑌 ) |
| 29 | oveq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( 𝑢 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) ) | |
| 30 | 29 | breq1d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
| 32 | 31 | ralima | ⊢ ( ( 𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
| 33 | 26 28 32 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
| 34 | oveq2 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) ) | |
| 35 | 34 | breq1d | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 36 | 35 | ralima | ⊢ ( ( 𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 37 | 26 28 36 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 38 | 37 | ralbidv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 39 | 33 38 | bitrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 40 | 39 | rexbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 41 | 24 40 | bitrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 42 | 41 | ralbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
| 43 | 4 13 42 | 3bitrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |