This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucfil.1 | |- Z = ( ZZ>= ` M ) |
|
| caucfil.2 | |- L = ( ( X FilMap F ) ` ( ZZ>= " Z ) ) |
||
| Assertion | caucfil | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( F e. ( Cau ` D ) <-> L e. ( CauFil ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucfil.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | caucfil.2 | |- L = ( ( X FilMap F ) ` ( ZZ>= " Z ) ) |
|
| 3 | df-3an | |- ( ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( ( k e. dom F /\ ( F ` k ) e. X ) /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
|
| 4 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 5 | 4 | adantll | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 6 | simpll3 | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> F : Z --> X ) |
|
| 7 | 6 | fdmd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> dom F = Z ) |
| 8 | 5 7 | eleqtrrd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. dom F ) |
| 9 | 6 5 | ffvelcdmd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) |
| 10 | 8 9 | jca | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( k e. dom F /\ ( F ` k ) e. X ) ) |
| 11 | 10 | biantrurd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x <-> ( ( k e. dom F /\ ( F ` k ) e. X ) /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 12 | uzss | |- ( k e. ( ZZ>= ` j ) -> ( ZZ>= ` k ) C_ ( ZZ>= ` j ) ) |
|
| 13 | 12 | adantl | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ZZ>= ` k ) C_ ( ZZ>= ` j ) ) |
| 14 | 13 | sseld | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( m e. ( ZZ>= ` k ) -> m e. ( ZZ>= ` j ) ) ) |
| 15 | 14 | pm4.71rd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( m e. ( ZZ>= ` k ) <-> ( m e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` k ) ) ) ) |
| 16 | 15 | imbi1d | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( ( m e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` k ) ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 17 | impexp | |- ( ( ( m e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` k ) ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( m e. ( ZZ>= ` j ) -> ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
|
| 18 | 16 17 | bitrdi | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( m e. ( ZZ>= ` j ) -> ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) ) |
| 19 | 18 | ralbidv2 | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x <-> A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 20 | 11 19 | bitr3d | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( k e. dom F /\ ( F ` k ) e. X ) /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 21 | 3 20 | bitrid | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 22 | 21 | ralbidva | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 23 | r19.26-2 | |- ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) <-> ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) ) |
|
| 24 | eleq1w | |- ( u = k -> ( u e. ( ZZ>= ` m ) <-> k e. ( ZZ>= ` m ) ) ) |
|
| 25 | fveq2 | |- ( u = k -> ( F ` u ) = ( F ` k ) ) |
|
| 26 | 25 | oveq2d | |- ( u = k -> ( ( F ` m ) D ( F ` u ) ) = ( ( F ` m ) D ( F ` k ) ) ) |
| 27 | 26 | breq1d | |- ( u = k -> ( ( ( F ` m ) D ( F ` u ) ) < x <-> ( ( F ` m ) D ( F ` k ) ) < x ) ) |
| 28 | 24 27 | imbi12d | |- ( u = k -> ( ( u e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` u ) ) < x ) <-> ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) ) |
| 29 | 28 | cbvralvw | |- ( A. u e. ( ZZ>= ` j ) ( u e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` u ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) |
| 30 | 29 | ralbii | |- ( A. m e. ( ZZ>= ` j ) A. u e. ( ZZ>= ` j ) ( u e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` u ) ) < x ) <-> A. m e. ( ZZ>= ` j ) A. k e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) |
| 31 | fveq2 | |- ( m = k -> ( ZZ>= ` m ) = ( ZZ>= ` k ) ) |
|
| 32 | 31 | eleq2d | |- ( m = k -> ( u e. ( ZZ>= ` m ) <-> u e. ( ZZ>= ` k ) ) ) |
| 33 | fveq2 | |- ( m = k -> ( F ` m ) = ( F ` k ) ) |
|
| 34 | 33 | oveq1d | |- ( m = k -> ( ( F ` m ) D ( F ` u ) ) = ( ( F ` k ) D ( F ` u ) ) ) |
| 35 | 34 | breq1d | |- ( m = k -> ( ( ( F ` m ) D ( F ` u ) ) < x <-> ( ( F ` k ) D ( F ` u ) ) < x ) ) |
| 36 | 32 35 | imbi12d | |- ( m = k -> ( ( u e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` u ) ) < x ) <-> ( u e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` u ) ) < x ) ) ) |
| 37 | eleq1w | |- ( u = m -> ( u e. ( ZZ>= ` k ) <-> m e. ( ZZ>= ` k ) ) ) |
|
| 38 | fveq2 | |- ( u = m -> ( F ` u ) = ( F ` m ) ) |
|
| 39 | 38 | oveq2d | |- ( u = m -> ( ( F ` k ) D ( F ` u ) ) = ( ( F ` k ) D ( F ` m ) ) ) |
| 40 | 39 | breq1d | |- ( u = m -> ( ( ( F ` k ) D ( F ` u ) ) < x <-> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 41 | 37 40 | imbi12d | |- ( u = m -> ( ( u e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` u ) ) < x ) <-> ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 42 | 36 41 | cbvral2vw | |- ( A. m e. ( ZZ>= ` j ) A. u e. ( ZZ>= ` j ) ( u e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` u ) ) < x ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 43 | ralcom | |- ( A. m e. ( ZZ>= ` j ) A. k e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) |
|
| 44 | 30 42 43 | 3bitr3i | |- ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) |
| 45 | 44 | anbi2i | |- ( ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) <-> ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) ) |
| 46 | anidm | |- ( ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
|
| 47 | 23 45 46 | 3bitr2i | |- ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 48 | simpll1 | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> D e. ( *Met ` X ) ) |
|
| 49 | simpll3 | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> F : Z --> X ) |
|
| 50 | 1 | uztrn2 | |- ( ( j e. Z /\ m e. ( ZZ>= ` j ) ) -> m e. Z ) |
| 51 | 50 | ad2ant2l | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> m e. Z ) |
| 52 | 49 51 | ffvelcdmd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( F ` m ) e. X ) |
| 53 | 9 | adantrr | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. X ) |
| 54 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ ( F ` m ) e. X /\ ( F ` k ) e. X ) -> ( ( F ` m ) D ( F ` k ) ) = ( ( F ` k ) D ( F ` m ) ) ) |
|
| 55 | 48 52 53 54 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( F ` m ) D ( F ` k ) ) = ( ( F ` k ) D ( F ` m ) ) ) |
| 56 | 55 | breq1d | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` m ) D ( F ` k ) ) < x <-> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 57 | 56 | imbi2d | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) <-> ( k e. ( ZZ>= ` m ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 58 | 57 | anbi2d | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) <-> ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) ) |
| 59 | jaob | |- ( ( ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
|
| 60 | eluzelz | |- ( k e. ( ZZ>= ` j ) -> k e. ZZ ) |
|
| 61 | eluzelz | |- ( m e. ( ZZ>= ` j ) -> m e. ZZ ) |
|
| 62 | uztric | |- ( ( k e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) ) |
|
| 63 | 60 61 62 | syl2an | |- ( ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) -> ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) ) |
| 64 | 63 | adantl | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) ) |
| 65 | pm5.5 | |- ( ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) -> ( ( ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
|
| 66 | 64 65 | syl | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( ( m e. ( ZZ>= ` k ) \/ k e. ( ZZ>= ` m ) ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 67 | 59 66 | bitr3id | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` k ) D ( F ` m ) ) < x ) ) <-> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 68 | 58 67 | bitrd | |- ( ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) /\ ( k e. ( ZZ>= ` j ) /\ m e. ( ZZ>= ` j ) ) ) -> ( ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) <-> ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 69 | 68 | 2ralbidva | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) /\ ( k e. ( ZZ>= ` m ) -> ( ( F ` m ) D ( F ` k ) ) < x ) ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 70 | 47 69 | bitr3id | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( m e. ( ZZ>= ` k ) -> ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 71 | 22 70 | bitrd | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 72 | 71 | rexbidva | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 73 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 74 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 75 | 73 74 | ax-mp | |- ZZ>= Fn ZZ |
| 76 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 77 | 1 76 | eqsstri | |- Z C_ ZZ |
| 78 | raleq | |- ( u = ( ZZ>= ` j ) -> ( A. m e. u ( ( F ` k ) D ( F ` m ) ) < x <-> A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
|
| 79 | 78 | raleqbi1dv | |- ( u = ( ZZ>= ` j ) -> ( A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x <-> A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 80 | 79 | rexima | |- ( ( ZZ>= Fn ZZ /\ Z C_ ZZ ) -> ( E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 81 | 75 77 80 | mp2an | |- ( E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) A. m e. ( ZZ>= ` j ) ( ( F ` k ) D ( F ` m ) ) < x ) |
| 82 | 72 81 | bitr4di | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 83 | 82 | ralbidv | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) <-> A. x e. RR+ E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 84 | elfvdm | |- ( D e. ( *Met ` X ) -> X e. dom *Met ) |
|
| 85 | 84 | adantr | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ ) -> X e. dom *Met ) |
| 86 | cnex | |- CC e. _V |
|
| 87 | 85 86 | jctir | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ ) -> ( X e. dom *Met /\ CC e. _V ) ) |
| 88 | zsscn | |- ZZ C_ CC |
|
| 89 | 77 88 | sstri | |- Z C_ CC |
| 90 | 89 | jctr | |- ( F : Z --> X -> ( F : Z --> X /\ Z C_ CC ) ) |
| 91 | elpm2r | |- ( ( ( X e. dom *Met /\ CC e. _V ) /\ ( F : Z --> X /\ Z C_ CC ) ) -> F e. ( X ^pm CC ) ) |
|
| 92 | 87 90 91 | syl2an | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ ) /\ F : Z --> X ) -> F e. ( X ^pm CC ) ) |
| 93 | simpl | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ ) -> D e. ( *Met ` X ) ) |
|
| 94 | simpr | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ ) -> M e. ZZ ) |
|
| 95 | 1 93 94 | iscau3 | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ ) -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) ) ) ) |
| 96 | 95 | baibd | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ ) /\ F e. ( X ^pm CC ) ) -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 97 | 92 96 | syldan | |- ( ( ( D e. ( *Met ` X ) /\ M e. ZZ ) /\ F : Z --> X ) -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 98 | 97 | 3impa | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ A. m e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` m ) ) < x ) ) ) |
| 99 | 2 | eleq1i | |- ( L e. ( CauFil ` D ) <-> ( ( X FilMap F ) ` ( ZZ>= " Z ) ) e. ( CauFil ` D ) ) |
| 100 | 1 | uzfbas | |- ( M e. ZZ -> ( ZZ>= " Z ) e. ( fBas ` Z ) ) |
| 101 | fmcfil | |- ( ( D e. ( *Met ` X ) /\ ( ZZ>= " Z ) e. ( fBas ` Z ) /\ F : Z --> X ) -> ( ( ( X FilMap F ) ` ( ZZ>= " Z ) ) e. ( CauFil ` D ) <-> A. x e. RR+ E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x ) ) |
|
| 102 | 100 101 | syl3an2 | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( ( ( X FilMap F ) ` ( ZZ>= " Z ) ) e. ( CauFil ` D ) <-> A. x e. RR+ E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 103 | 99 102 | bitrid | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( L e. ( CauFil ` D ) <-> A. x e. RR+ E. u e. ( ZZ>= " Z ) A. k e. u A. m e. u ( ( F ` k ) D ( F ` m ) ) < x ) ) |
| 104 | 83 98 103 | 3bitr4d | |- ( ( D e. ( *Met ` X ) /\ M e. ZZ /\ F : Z --> X ) -> ( F e. ( Cau ` D ) <-> L e. ( CauFil ` D ) ) ) |