This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the bra function. (Contributed by NM, 24-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | branmfn | ⊢ ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | ⊢ ( 𝐴 = 0ℎ → ( normfn ‘ ( bra ‘ 𝐴 ) ) = ( normfn ‘ ( bra ‘ 0ℎ ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = 0ℎ → ( ( normfn ‘ ( bra ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ↔ ( normfn ‘ ( bra ‘ 0ℎ ) ) = ( normℎ ‘ 0ℎ ) ) ) |
| 4 | brafn | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) | |
| 5 | nmfnval | ⊢ ( ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ → ( normfn ‘ ( bra ‘ 𝐴 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝐴 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normfn ‘ ( bra ‘ 𝐴 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 8 | nmfnsetre | ⊢ ( ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ⊆ ℝ ) | |
| 9 | 4 8 | syl | ⊢ ( 𝐴 ∈ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
| 10 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 11 | 9 10 | sstrdi | ⊢ ( 𝐴 ∈ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 12 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 13 | 12 | rexrd | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ* ) |
| 14 | 11 13 | jca | ⊢ ( 𝐴 ∈ ℋ → ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ* ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ* ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ↔ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) |
| 20 | 16 19 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) |
| 21 | id | ⊢ ( 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) → 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) | |
| 22 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝐴 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) |
| 25 | 21 24 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑧 = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) |
| 26 | bcs2 | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) | |
| 27 | 26 | 3expa | ⊢ ( ( ( 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |
| 28 | 27 | ancom1s | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) → ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) → ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |
| 30 | 25 29 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) ≤ 1 ) ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) |
| 31 | 30 | exp41 | ⊢ ( 𝐴 ∈ ℋ → ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ≤ 1 → ( 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) → 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) ) ) ) |
| 32 | 31 | imp4a | ⊢ ( 𝐴 ∈ ℋ → ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) ) ) |
| 33 | 32 | rexlimdv | ⊢ ( 𝐴 ∈ ℋ → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) → 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) ) |
| 34 | 33 | imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) → 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) |
| 35 | 20 34 | sylan2b | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ) → 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) |
| 36 | 35 | ralrimiva | ⊢ ( 𝐴 ∈ ℋ → ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ ( normℎ ‘ 𝐴 ) ) |
| 38 | 12 | recnd | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 39 | 38 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 40 | normne0 | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) | |
| 41 | 40 | biimpar | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
| 42 | 39 41 | reccld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
| 43 | simpl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) | |
| 44 | hvmulcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) | |
| 45 | 42 43 44 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
| 46 | norm1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) | |
| 47 | 1le1 | ⊢ 1 ≤ 1 | |
| 48 | 46 47 | eqbrtrdi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
| 49 | ax-his3 | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ) | |
| 50 | 42 43 43 49 | syl3anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 51 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 52 | 51 41 | rereccld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 53 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 54 | 53 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
| 55 | 52 54 | remulcld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
| 56 | 50 55 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ) |
| 57 | normgt0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) | |
| 58 | 57 | biimpa | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
| 59 | 51 58 | recgt0d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 60 | 0re | ⊢ 0 ∈ ℝ | |
| 61 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) | |
| 62 | 60 61 | mpan | ⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
| 63 | 52 59 62 | sylc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 64 | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) | |
| 65 | 64 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |
| 66 | 52 54 63 65 | mulge0d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 67 | 66 50 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
| 68 | 56 67 | absidd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) = ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
| 69 | 39 41 | recid2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ 𝐴 ) ) = 1 ) |
| 70 | 69 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ 𝐴 ) · ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ 𝐴 ) ) ) = ( ( normℎ ‘ 𝐴 ) · 1 ) ) |
| 71 | 39 42 39 | mul12d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ 𝐴 ) · ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 72 | 38 | sqvald | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 73 | normsq | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) | |
| 74 | 72 73 | eqtr3d | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) |
| 76 | 75 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 77 | 71 76 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ 𝐴 ) · ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 78 | 38 | mulridd | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) · 1 ) = ( normℎ ‘ 𝐴 ) ) |
| 79 | 78 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ 𝐴 ) · 1 ) = ( normℎ ‘ 𝐴 ) ) |
| 80 | 70 77 79 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 81 | 50 68 80 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) |
| 82 | fveq2 | ⊢ ( 𝑦 = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) | |
| 83 | 82 | breq1d | ⊢ ( 𝑦 = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) ) |
| 84 | fvoveq1 | ⊢ ( 𝑦 = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) → ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) = ( abs ‘ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) | |
| 85 | 84 | eqeq2d | ⊢ ( 𝑦 = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) → ( ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ↔ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) ) |
| 86 | 83 85 | anbi12d | ⊢ ( 𝑦 = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ↔ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) ) ) |
| 87 | 86 | rspcev | ⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ) |
| 88 | 45 48 81 87 | syl12anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ) |
| 89 | 23 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ↔ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ) |
| 90 | 89 | anbi2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ) ) |
| 91 | 90 | rexbidva | ⊢ ( 𝐴 ∈ ℋ → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( 𝑦 ·ih 𝐴 ) ) ) ) ) |
| 93 | 88 92 | mpbird | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) |
| 94 | eqeq1 | ⊢ ( 𝑥 = ( normℎ ‘ 𝐴 ) → ( 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ↔ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) | |
| 95 | 94 | anbi2d | ⊢ ( 𝑥 = ( normℎ ‘ 𝐴 ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) |
| 96 | 95 | rexbidv | ⊢ ( 𝑥 = ( normℎ ‘ 𝐴 ) → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ 𝐴 ) = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) |
| 97 | 39 93 96 | elabd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ) |
| 98 | breq2 | ⊢ ( 𝑤 = ( normℎ ‘ 𝐴 ) → ( 𝑧 < 𝑤 ↔ 𝑧 < ( normℎ ‘ 𝐴 ) ) ) | |
| 99 | 98 | rspcev | ⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ∧ 𝑧 < ( normℎ ‘ 𝐴 ) ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 100 | 97 99 | sylan | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑧 < ( normℎ ‘ 𝐴 ) ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 101 | 100 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < ( normℎ ‘ 𝐴 ) ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 102 | 101 | ex | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑧 < ( normℎ ‘ 𝐴 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 103 | 102 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ∀ 𝑧 ∈ ℝ ( 𝑧 < ( normℎ ‘ 𝐴 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 104 | supxr2 | ⊢ ( ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( normℎ ‘ 𝐴 ) ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 ≤ ( normℎ ‘ 𝐴 ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < ( normℎ ‘ 𝐴 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = ( normℎ ‘ 𝐴 ) ) | |
| 105 | 15 37 103 104 | syl12anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = ( normℎ ‘ 𝐴 ) ) |
| 106 | 7 105 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normfn ‘ ( bra ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |
| 107 | nmfn0 | ⊢ ( normfn ‘ ( ℋ × { 0 } ) ) = 0 | |
| 108 | bra0 | ⊢ ( bra ‘ 0ℎ ) = ( ℋ × { 0 } ) | |
| 109 | 108 | fveq2i | ⊢ ( normfn ‘ ( bra ‘ 0ℎ ) ) = ( normfn ‘ ( ℋ × { 0 } ) ) |
| 110 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 111 | 107 109 110 | 3eqtr4i | ⊢ ( normfn ‘ ( bra ‘ 0ℎ ) ) = ( normℎ ‘ 0ℎ ) |
| 112 | 111 | a1i | ⊢ ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 0ℎ ) ) = ( normℎ ‘ 0ℎ ) ) |
| 113 | 3 106 112 | pm2.61ne | ⊢ ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |