This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxr2 | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) | |
| 2 | xrlenlt | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
| 4 | 3 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
| 5 | 4 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) ) |
| 6 | 5 | anbi1d | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 8 | supxr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) | |
| 9 | 7 8 | syldan | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |