This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the functional norm definition df-nmfn is a set of reals. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnsetre | ⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℂ ) | |
| 2 | 1 | abscld | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 3 | eleq1 | ⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) → ( 𝑥 ∈ ℝ ↔ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) ) | |
| 4 | 2 3 | imbitrrid | ⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) → ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) ) |
| 5 | 4 | impcom | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) |
| 6 | 5 | adantrl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 7 | 6 | rexlimdva2 | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) |
| 8 | 7 | abssdv | ⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |