This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of nonzero vector is positive. (Contributed by NM, 10-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normgt0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
| 3 | ax-his4 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) | |
| 4 | sqrtgt0 | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐴 ·ih 𝐴 ) ) → 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
| 6 | 5 | ex | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ → 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 7 | oveq1 | ⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) ) | |
| 8 | hi01 | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) | |
| 9 | 7 8 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = 0 ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = ( √ ‘ 0 ) ) |
| 11 | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 | |
| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ) |
| 13 | 12 | ex | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ) ) |
| 14 | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) | |
| 15 | 1 14 | resqrtcld | ⊢ ( 𝐴 ∈ ℋ → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | lttri3 | ⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ↔ ( ¬ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) < 0 ∧ ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( 𝐴 ∈ ℋ → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 ↔ ( ¬ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) < 0 ∧ ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 19 | simpr | ⊢ ( ( ¬ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) < 0 ∧ ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) → ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
| 20 | 18 19 | biimtrdi | ⊢ ( 𝐴 ∈ ℋ → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) = 0 → ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 21 | 13 20 | syld | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → ¬ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 22 | 21 | necon2ad | ⊢ ( 𝐴 ∈ ℋ → ( 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) → 𝐴 ≠ 0ℎ ) ) |
| 23 | 6 22 | impbid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 24 | normval | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
| 25 | 24 | breq2d | ⊢ ( 𝐴 ∈ ℋ → ( 0 < ( normℎ ‘ 𝐴 ) ↔ 0 < ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 26 | 23 25 | bitr4d | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |