This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Explicit demonstration the class { x | ps } is not empty by the example A . (Contributed by RP, 12-Aug-2020) (Revised by AV, 23-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| elabd.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| elabd.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | elabd | ⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | elabd.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | elabd.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3 | elabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜒 ) ) |
| 6 | 2 5 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |