This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnval | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | ⊢ < Or ℝ* | |
| 2 | 1 | supex | ⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ V |
| 3 | ax-hilex | ⊢ ℋ ∈ V | |
| 4 | cnex | ⊢ ℂ ∈ V | |
| 5 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑡 = 𝑇 → ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 7 | 6 | eqeq2d | ⊢ ( 𝑡 = 𝑇 → ( 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) ↔ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 8 | 7 | anbi2d | ⊢ ( 𝑡 = 𝑇 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 10 | 9 | abbidv | ⊢ ( 𝑡 = 𝑇 → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 11 | 10 | supeq1d | ⊢ ( 𝑡 = 𝑇 → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 12 | df-nmfn | ⊢ normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 13 | 2 3 4 11 12 | fvmptmap | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |