This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL . (Contributed by NM, 24-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcs2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) | |
| 2 | 1 | abscld | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ ) |
| 4 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | normcl | ⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℝ ) | |
| 6 | remulcl | ⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ ( normℎ ‘ 𝐵 ) ∈ ℝ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
| 9 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
| 10 | bcs | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) | |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| 12 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 13 | normge0 | ⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐵 ) ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → 0 ≤ ( normℎ ‘ 𝐵 ) ) |
| 15 | 9 14 | jca | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) |
| 16 | simp3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐴 ) ≤ 1 ) | |
| 17 | 1re | ⊢ 1 ∈ ℝ | |
| 18 | lemul1a | ⊢ ( ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) | |
| 19 | 17 18 | mp3anl2 | ⊢ ( ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
| 20 | 12 15 16 19 | syl21anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
| 21 | 5 | recnd | ⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℂ ) |
| 22 | 21 | mullidd | ⊢ ( 𝐵 ∈ ℋ → ( 1 · ( normℎ ‘ 𝐵 ) ) = ( normℎ ‘ 𝐵 ) ) |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( 1 · ( normℎ ‘ 𝐵 ) ) = ( normℎ ‘ 𝐵 ) ) |
| 24 | 20 23 | breqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |
| 25 | 3 8 9 11 24 | letrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |