This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -u F .) (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bndth.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| bndth.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| bndth.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| bndth.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | bndth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bndth.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | bndth.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 3 | bndth.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | bndth.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 5 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 6 | 2 5 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 7 | 6 | toponunii | ⊢ ℝ = ∪ 𝐾 |
| 8 | 1 7 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 10 | 9 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 11 | unieq | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ∪ 𝑢 = ∪ ( (,) “ ( { -∞ } × ℝ ) ) ) | |
| 12 | imassrn | ⊢ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ran (,) | |
| 13 | 12 | unissi | ⊢ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ∪ ran (,) |
| 14 | unirnioo | ⊢ ℝ = ∪ ran (,) | |
| 15 | 13 14 | sseqtrri | ⊢ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ℝ |
| 16 | id | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) | |
| 17 | ltp1 | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) ) | |
| 18 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 19 | peano2re | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) | |
| 20 | 18 19 | sselid | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ* ) |
| 21 | elioomnf | ⊢ ( ( 𝑥 + 1 ) ∈ ℝ* → ( 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( 𝑥 + 1 ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < ( 𝑥 + 1 ) ) ) ) |
| 23 | 16 17 22 | mpbir2and | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ) |
| 24 | df-ov | ⊢ ( -∞ (,) ( 𝑥 + 1 ) ) = ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) | |
| 25 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 26 | 25 | elexi | ⊢ -∞ ∈ V |
| 27 | 26 | snid | ⊢ -∞ ∈ { -∞ } |
| 28 | opelxpi | ⊢ ( ( -∞ ∈ { -∞ } ∧ ( 𝑥 + 1 ) ∈ ℝ ) → 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) ) | |
| 29 | 27 19 28 | sylancr | ⊢ ( 𝑥 ∈ ℝ → 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) ) |
| 30 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 31 | ffun | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) | |
| 32 | 30 31 | ax-mp | ⊢ Fun (,) |
| 33 | snssi | ⊢ ( -∞ ∈ ℝ* → { -∞ } ⊆ ℝ* ) | |
| 34 | 25 33 | ax-mp | ⊢ { -∞ } ⊆ ℝ* |
| 35 | xpss12 | ⊢ ( ( { -∞ } ⊆ ℝ* ∧ ℝ ⊆ ℝ* ) → ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) ) | |
| 36 | 34 18 35 | mp2an | ⊢ ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 37 | 30 | fdmi | ⊢ dom (,) = ( ℝ* × ℝ* ) |
| 38 | 36 37 | sseqtrri | ⊢ ( { -∞ } × ℝ ) ⊆ dom (,) |
| 39 | funfvima2 | ⊢ ( ( Fun (,) ∧ ( { -∞ } × ℝ ) ⊆ dom (,) ) → ( 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) → ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) ) | |
| 40 | 32 38 39 | mp2an | ⊢ ( 〈 -∞ , ( 𝑥 + 1 ) 〉 ∈ ( { -∞ } × ℝ ) → ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 41 | 29 40 | syl | ⊢ ( 𝑥 ∈ ℝ → ( (,) ‘ 〈 -∞ , ( 𝑥 + 1 ) 〉 ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 42 | 24 41 | eqeltrid | ⊢ ( 𝑥 ∈ ℝ → ( -∞ (,) ( 𝑥 + 1 ) ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 43 | elunii | ⊢ ( ( 𝑥 ∈ ( -∞ (,) ( 𝑥 + 1 ) ) ∧ ( -∞ (,) ( 𝑥 + 1 ) ) ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) → 𝑥 ∈ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ) | |
| 44 | 23 42 43 | syl2anc | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 45 | 44 | ssriv | ⊢ ℝ ⊆ ∪ ( (,) “ ( { -∞ } × ℝ ) ) |
| 46 | 15 45 | eqssi | ⊢ ∪ ( (,) “ ( { -∞ } × ℝ ) ) = ℝ |
| 47 | 11 46 | eqtrdi | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ∪ 𝑢 = ℝ ) |
| 48 | 47 | sseq2d | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( ran 𝐹 ⊆ ∪ 𝑢 ↔ ran 𝐹 ⊆ ℝ ) ) |
| 49 | pweq | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → 𝒫 𝑢 = 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ) | |
| 50 | 49 | ineq1d | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( 𝒫 𝑢 ∩ Fin ) = ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) |
| 51 | 50 | rexeqdv | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) |
| 52 | 48 51 | imbi12d | ⊢ ( 𝑢 = ( (,) “ ( { -∞ } × ℝ ) ) → ( ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ↔ ( ran 𝐹 ⊆ ℝ → ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) ) |
| 53 | rncmp | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ) | |
| 54 | 3 4 53 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ) |
| 55 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 56 | 2 55 | eqeltri | ⊢ 𝐾 ∈ Top |
| 57 | 7 | cmpsub | ⊢ ( ( 𝐾 ∈ Top ∧ ran 𝐹 ⊆ ℝ ) → ( ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐾 ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) ) |
| 58 | 56 10 57 | sylancr | ⊢ ( 𝜑 → ( ( 𝐾 ↾t ran 𝐹 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐾 ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) ) |
| 59 | 54 58 | mpbid | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 𝐾 ( ran 𝐹 ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) |
| 60 | retopbas | ⊢ ran (,) ∈ TopBases | |
| 61 | bastg | ⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) | |
| 62 | 60 61 | ax-mp | ⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 63 | 62 2 | sseqtrri | ⊢ ran (,) ⊆ 𝐾 |
| 64 | 12 63 | sstri | ⊢ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ 𝐾 |
| 65 | 56 64 | elpwi2 | ⊢ ( (,) “ ( { -∞ } × ℝ ) ) ∈ 𝒫 𝐾 |
| 66 | 65 | a1i | ⊢ ( 𝜑 → ( (,) “ ( { -∞ } × ℝ ) ) ∈ 𝒫 𝐾 ) |
| 67 | 52 59 66 | rspcdva | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ → ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) ) |
| 68 | 10 67 | mpd | ⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ran 𝐹 ⊆ ∪ 𝑣 ) |
| 69 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) | |
| 70 | elin | ⊢ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ↔ ( 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∧ 𝑣 ∈ Fin ) ) | |
| 71 | 69 70 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → ( 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∧ 𝑣 ∈ Fin ) ) |
| 72 | 71 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ( 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∧ 𝑣 ∈ Fin ) ) |
| 73 | 72 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ Fin ) |
| 74 | 71 | simpld | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → 𝑣 ∈ 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 75 | 74 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → 𝑣 ⊆ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 76 | 34 | sseli | ⊢ ( 𝑢 ∈ { -∞ } → 𝑢 ∈ ℝ* ) |
| 77 | 76 | adantr | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑢 ∈ ℝ* ) |
| 78 | 18 | sseli | ⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℝ* ) |
| 79 | 78 | adantl | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ* ) |
| 80 | mnflt | ⊢ ( 𝑤 ∈ ℝ → -∞ < 𝑤 ) | |
| 81 | xrltnle | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( -∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞ ) ) | |
| 82 | 25 78 81 | sylancr | ⊢ ( 𝑤 ∈ ℝ → ( -∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞ ) ) |
| 83 | 80 82 | mpbid | ⊢ ( 𝑤 ∈ ℝ → ¬ 𝑤 ≤ -∞ ) |
| 84 | 83 | adantl | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ¬ 𝑤 ≤ -∞ ) |
| 85 | elsni | ⊢ ( 𝑢 ∈ { -∞ } → 𝑢 = -∞ ) | |
| 86 | 85 | adantr | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑢 = -∞ ) |
| 87 | 86 | breq2d | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( 𝑤 ≤ 𝑢 ↔ 𝑤 ≤ -∞ ) ) |
| 88 | 84 87 | mtbird | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ¬ 𝑤 ≤ 𝑢 ) |
| 89 | ioo0 | ⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝑢 (,) 𝑤 ) = ∅ ↔ 𝑤 ≤ 𝑢 ) ) | |
| 90 | 76 78 89 | syl2an | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( ( 𝑢 (,) 𝑤 ) = ∅ ↔ 𝑤 ≤ 𝑢 ) ) |
| 91 | 90 | necon3abid | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( ( 𝑢 (,) 𝑤 ) ≠ ∅ ↔ ¬ 𝑤 ≤ 𝑢 ) ) |
| 92 | 88 91 | mpbird | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → ( 𝑢 (,) 𝑤 ) ≠ ∅ ) |
| 93 | df-ioo | ⊢ (,) = ( 𝑦 ∈ ℝ* , 𝑧 ∈ ℝ* ↦ { 𝑣 ∈ ℝ* ∣ ( 𝑦 < 𝑣 ∧ 𝑣 < 𝑧 ) } ) | |
| 94 | idd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑥 < 𝑤 → 𝑥 < 𝑤 ) ) | |
| 95 | xrltle | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑥 < 𝑤 → 𝑥 ≤ 𝑤 ) ) | |
| 96 | idd | ⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑢 < 𝑥 → 𝑢 < 𝑥 ) ) | |
| 97 | xrltle | ⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑢 < 𝑥 → 𝑢 ≤ 𝑥 ) ) | |
| 98 | 93 94 95 96 97 | ixxub | ⊢ ( ( 𝑢 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ ( 𝑢 (,) 𝑤 ) ≠ ∅ ) → sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) = 𝑤 ) |
| 99 | 77 79 92 98 | syl3anc | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) = 𝑤 ) |
| 100 | simpr | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) | |
| 101 | 99 100 | eqeltrd | ⊢ ( ( 𝑢 ∈ { -∞ } ∧ 𝑤 ∈ ℝ ) → sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ ) |
| 102 | 101 | rgen2 | ⊢ ∀ 𝑢 ∈ { -∞ } ∀ 𝑤 ∈ ℝ sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ |
| 103 | fveq2 | ⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → ( (,) ‘ 𝑧 ) = ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) ) | |
| 104 | df-ov | ⊢ ( 𝑢 (,) 𝑤 ) = ( (,) ‘ 〈 𝑢 , 𝑤 〉 ) | |
| 105 | 103 104 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → ( (,) ‘ 𝑧 ) = ( 𝑢 (,) 𝑤 ) ) |
| 106 | 105 | supeq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) = sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ) |
| 107 | 106 | eleq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑤 〉 → ( sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ↔ sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ ) ) |
| 108 | 107 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ↔ ∀ 𝑢 ∈ { -∞ } ∀ 𝑤 ∈ ℝ sup ( ( 𝑢 (,) 𝑤 ) , ℝ* , < ) ∈ ℝ ) |
| 109 | 102 108 | mpbir | ⊢ ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ |
| 110 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 111 | 30 110 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 112 | supeq1 | ⊢ ( 𝑤 = ( (,) ‘ 𝑧 ) → sup ( 𝑤 , ℝ* , < ) = sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ) | |
| 113 | 112 | eleq1d | ⊢ ( 𝑤 = ( (,) ‘ 𝑧 ) → ( sup ( 𝑤 , ℝ* , < ) ∈ ℝ ↔ sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ) ) |
| 114 | 113 | ralima | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( { -∞ } × ℝ ) ⊆ ( ℝ* × ℝ* ) ) → ( ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ ↔ ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ) ) |
| 115 | 111 36 114 | mp2an | ⊢ ( ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ ↔ ∀ 𝑧 ∈ ( { -∞ } × ℝ ) sup ( ( (,) ‘ 𝑧 ) , ℝ* , < ) ∈ ℝ ) |
| 116 | 109 115 | mpbir | ⊢ ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ |
| 117 | ssralv | ⊢ ( 𝑣 ⊆ ( (,) “ ( { -∞ } × ℝ ) ) → ( ∀ 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) sup ( 𝑤 , ℝ* , < ) ∈ ℝ → ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) ) | |
| 118 | 75 116 117 | mpisyl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) → ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 119 | 118 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 120 | fimaxre3 | ⊢ ( ( 𝑣 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) | |
| 121 | 73 119 120 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) |
| 122 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ran 𝐹 ⊆ ∪ 𝑣 ) | |
| 123 | 122 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ran 𝐹 ) → 𝑧 ∈ ∪ 𝑣 ) |
| 124 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝑣 ↔ ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ) | |
| 125 | r19.29r | ⊢ ( ( ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → ∃ 𝑤 ∈ 𝑣 ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) | |
| 126 | sspwuni | ⊢ ( ( (,) “ ( { -∞ } × ℝ ) ) ⊆ 𝒫 ℝ ↔ ∪ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ ℝ ) | |
| 127 | 15 126 | mpbir | ⊢ ( (,) “ ( { -∞ } × ℝ ) ) ⊆ 𝒫 ℝ |
| 128 | 75 | 3ad2ant1 | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑣 ⊆ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 129 | simp2r | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ∈ 𝑣 ) | |
| 130 | 128 129 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ∈ ( (,) “ ( { -∞ } × ℝ ) ) ) |
| 131 | 127 130 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ∈ 𝒫 ℝ ) |
| 132 | 131 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ⊆ ℝ ) |
| 133 | simp3l | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ∈ 𝑤 ) | |
| 134 | 132 133 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ∈ ℝ ) |
| 135 | 118 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ 𝑤 ∈ 𝑣 ) → sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 136 | 135 | adantrl | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ) → sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 137 | 136 | 3adant3 | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → sup ( 𝑤 , ℝ* , < ) ∈ ℝ ) |
| 138 | simp2l | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) | |
| 139 | 132 18 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑤 ⊆ ℝ* ) |
| 140 | supxrub | ⊢ ( ( 𝑤 ⊆ ℝ* ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ≤ sup ( 𝑤 , ℝ* , < ) ) | |
| 141 | 139 133 140 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ≤ sup ( 𝑤 , ℝ* , < ) ) |
| 142 | simp3r | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) | |
| 143 | 134 137 138 141 142 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) ) → 𝑧 ≤ 𝑥 ) |
| 144 | 143 | 3expia | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ 𝑣 ) ) → ( ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 145 | 144 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑤 ∈ 𝑣 ) → ( ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 146 | 145 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑤 ∈ 𝑣 ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 147 | 146 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑤 ∈ 𝑣 ( 𝑧 ∈ 𝑤 ∧ sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 148 | 125 147 | syl5 | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 ) → 𝑧 ≤ 𝑥 ) ) |
| 149 | 148 | expdimp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑤 ∈ 𝑣 𝑧 ∈ 𝑤 ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
| 150 | 124 149 | sylan2b | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ∪ 𝑣 ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
| 151 | 123 150 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ran 𝐹 ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
| 152 | 151 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ) |
| 153 | 9 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 154 | 153 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn 𝑋 ) |
| 155 | breq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) | |
| 156 | 155 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 157 | 154 156 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 158 | 152 157 | sylibd | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 159 | 158 | reximdva | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑣 sup ( 𝑤 , ℝ* , < ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 160 | 121 159 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝒫 ( (,) “ ( { -∞ } × ℝ ) ) ∩ Fin ) ∧ ran 𝐹 ⊆ ∪ 𝑣 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |
| 161 | 68 160 | rexlimddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |