This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bastg | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | pwid | ⊢ 𝑥 ∈ 𝒫 𝑥 |
| 4 | 3 | a1i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝑥 ) |
| 5 | 1 4 | elind | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 6 | elssuni | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 8 | 7 | ex | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 9 | eltg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) | |
| 10 | 8 9 | sylibrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 11 | 10 | ssrdv | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |