This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| ixxub.2 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 𝑆 𝐵 ) ) | ||
| ixxub.3 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 ≤ 𝐵 ) ) | ||
| ixxub.4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 𝑅 𝑤 ) ) | ||
| ixxub.5 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 ≤ 𝑤 ) ) | ||
| Assertion | ixxub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | ixxub.2 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 < 𝐵 → 𝑤 𝑆 𝐵 ) ) | |
| 3 | ixxub.3 | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 ≤ 𝐵 ) ) | |
| 4 | ixxub.4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 → 𝐴 𝑅 𝑤 ) ) | |
| 5 | ixxub.5 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 ≤ 𝑤 ) ) | |
| 6 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 8 | 7 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) |
| 9 | 8 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 ∈ ℝ* ) |
| 10 | 9 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ℝ* ) ) |
| 11 | 10 | ssrdv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ) |
| 12 | supxrcl | ⊢ ( ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
| 14 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → 𝐵 ∈ ℝ* ) | |
| 15 | 8 | simp3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 𝑆 𝐵 ) |
| 16 | 14 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 17 | 9 16 3 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝑤 𝑆 𝐵 → 𝑤 ≤ 𝐵 ) ) |
| 18 | 15 17 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 ≤ 𝐵 ) |
| 19 | 18 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ∀ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) 𝑤 ≤ 𝐵 ) |
| 20 | supxrleub | ⊢ ( ( ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) 𝑤 ≤ 𝐵 ) ) | |
| 21 | 11 14 20 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) 𝑤 ≤ 𝐵 ) ) |
| 22 | 19 21 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ≤ 𝐵 ) |
| 23 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ) | |
| 24 | 11 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ) |
| 25 | qre | ⊢ ( 𝑤 ∈ ℚ → 𝑤 ∈ ℝ ) | |
| 26 | 25 | rexrd | ⊢ ( 𝑤 ∈ ℚ → 𝑤 ∈ ℝ* ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝑤 ∈ ℝ* ) |
| 28 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → 𝐴 ∈ ℝ* ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 30 | 13 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
| 31 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) | |
| 32 | n0 | ⊢ ( ( 𝐴 𝑂 𝐵 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) | |
| 33 | 31 32 | sylib | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ∃ 𝑤 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) |
| 34 | 28 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 35 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
| 36 | 8 | simp2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 𝑅 𝑤 ) |
| 37 | 34 9 5 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝐴 𝑅 𝑤 → 𝐴 ≤ 𝑤 ) ) |
| 38 | 36 37 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 ≤ 𝑤 ) |
| 39 | supxrub | ⊢ ( ( ( 𝐴 𝑂 𝐵 ) ⊆ ℝ* ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) | |
| 40 | 11 39 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 41 | 34 9 35 38 40 | xrletrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝐴 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 42 | 33 41 | exlimddv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → 𝐴 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝐴 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 44 | 29 30 27 43 23 | xrlelttrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝐴 < 𝑤 ) |
| 45 | 29 27 4 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → ( 𝐴 < 𝑤 → 𝐴 𝑅 𝑤 ) ) |
| 46 | 44 45 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝐴 𝑅 𝑤 ) |
| 47 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝑤 < 𝐵 ) | |
| 48 | 14 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 49 | 27 48 2 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → ( 𝑤 < 𝐵 → 𝑤 𝑆 𝐵 ) ) |
| 50 | 47 49 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝑤 𝑆 𝐵 ) |
| 51 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 52 | 27 46 50 51 | mpbir3and | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) |
| 53 | 24 52 39 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → 𝑤 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 54 | 27 30 | xrlenltd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → ( 𝑤 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ↔ ¬ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ) ) |
| 55 | 53 54 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) ∧ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) → ¬ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ) |
| 56 | 23 55 | pm2.65da | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) ∧ 𝑤 ∈ ℚ ) → ¬ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) |
| 57 | 56 | nrexdv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ¬ ∃ 𝑤 ∈ ℚ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) |
| 58 | qbtwnxr | ⊢ ( ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝐵 ) → ∃ 𝑤 ∈ ℚ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) | |
| 59 | 58 | 3expia | ⊢ ( ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝐵 → ∃ 𝑤 ∈ ℚ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) ) |
| 60 | 13 14 59 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝐵 → ∃ 𝑤 ∈ ℚ ( sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝑤 ∧ 𝑤 < 𝐵 ) ) ) |
| 61 | 57 60 | mtod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → ¬ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) < 𝐵 ) |
| 62 | 14 13 61 | xrnltled | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → 𝐵 ≤ sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) ) |
| 63 | 13 14 22 62 | xrletrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐴 𝑂 𝐵 ) ≠ ∅ ) → sup ( ( 𝐴 𝑂 𝐵 ) , ℝ* , < ) = 𝐵 ) |