This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bndth.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| bndth.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| bndth.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| bndth.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| evth.5 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | ||
| Assertion | evth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bndth.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | bndth.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 3 | bndth.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | bndth.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 5 | evth.5 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 𝐽 ∈ Comp ) |
| 7 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 𝐽 ∈ Top ) |
| 9 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | 8 9 | sylib | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 12 | 11 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 13 | 12 | a1i | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 14 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → 1 ∈ ℂ ) | |
| 15 | 10 13 14 | cnmptc | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ 1 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 17 | 2 | unieqi | ⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
| 18 | 16 17 | eqtr4i | ⊢ ℝ = ∪ 𝐾 |
| 19 | 1 18 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 21 | 20 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 22 | 20 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 23 | 22 5 | eqnetrd | ⊢ ( 𝜑 → dom 𝐹 ≠ ∅ ) |
| 24 | dm0rn0 | ⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) | |
| 25 | 24 | necon3bii | ⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 26 | 23 25 | sylib | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| 27 | 1 2 3 4 | bndth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) |
| 28 | 20 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 29 | breq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) | |
| 30 | 29 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 31 | 28 30 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 32 | 31 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 33 | 27 32 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) |
| 34 | 21 26 33 | 3jca | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ) |
| 35 | suprcl | ⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) | |
| 36 | 34 35 | syl | ⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 37 | 36 | recnd | ⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 39 | 10 13 38 | cnmptc | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ sup ( ran 𝐹 , ℝ , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 40 | 20 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 41 | 11 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 42 | cnrest2r | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) | |
| 43 | 41 42 | ax-mp | ⊢ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) |
| 44 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 45 | 2 44 | eqtri | ⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 46 | 45 | oveq2i | ⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 47 | 4 46 | eleqtrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 48 | 43 47 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 49 | 40 48 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 51 | 11 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 52 | 51 | a1i | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 53 | 10 39 50 52 | cnmpt12f | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 54 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 55 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) | |
| 56 | 55 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 57 | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) | |
| 58 | 56 57 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 59 | 58 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 60 | 54 59 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 61 | 60 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 62 | 54 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 63 | 59 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 64 | 58 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) |
| 65 | 64 | necomd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran 𝐹 , ℝ , < ) ≠ ( 𝐹 ‘ 𝑧 ) ) |
| 66 | 62 63 65 | subne0d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ≠ 0 ) |
| 67 | eldifsn | ⊢ ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ≠ 0 ) ) | |
| 68 | 61 66 67 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ( ℂ ∖ { 0 } ) ) |
| 69 | 68 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) |
| 70 | 69 | frnd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ran ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ) |
| 71 | difssd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 72 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) ) | |
| 73 | 13 70 71 72 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) ) |
| 74 | 53 73 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) |
| 75 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) | |
| 76 | 11 75 | divcn | ⊢ / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 77 | 76 | a1i | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 78 | 10 15 74 77 | cnmpt12f | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 79 | 60 66 | rereccld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 80 | 79 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) : 𝑋 ⟶ ℝ ) |
| 81 | 80 | frnd | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ran ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ⊆ ℝ ) |
| 82 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 83 | 82 | a1i | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ℝ ⊆ ℂ ) |
| 84 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) | |
| 85 | 13 81 83 84 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 86 | 78 85 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 87 | 86 46 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 88 | 1 2 6 87 | bndth | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 89 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 90 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 91 | 1re | ⊢ 1 ∈ ℝ | |
| 92 | ifcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) | |
| 93 | 90 91 92 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) |
| 94 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 95 | 91 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
| 96 | 0lt1 | ⊢ 0 < 1 | |
| 97 | 96 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < 1 ) |
| 98 | max1 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) | |
| 99 | 91 90 98 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 1 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 100 | 94 95 93 97 99 | ltletrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 101 | 100 | gt0ne0d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ≠ 0 ) |
| 102 | 93 101 | rereccld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ) |
| 103 | 93 100 | recgt0d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 104 | 102 103 | elrpd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ+ ) |
| 105 | 89 104 | ltsubrpd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) < sup ( ran 𝐹 , ℝ , < ) ) |
| 106 | 89 102 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ∈ ℝ ) |
| 107 | 106 89 | ltnled | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) < sup ( ran 𝐹 , ℝ , < ) ↔ ¬ sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 108 | 105 107 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ¬ sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) |
| 109 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ℝ ) | |
| 110 | max2 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) | |
| 111 | 91 109 110 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 112 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 113 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) | |
| 114 | 113 | ad2ant2l | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 115 | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) | |
| 116 | 114 115 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 117 | 116 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 118 | 112 117 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 119 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) | |
| 120 | 28 119 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 121 | suprub | ⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) | |
| 122 | 34 120 121 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 123 | 122 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 124 | 116 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) |
| 125 | 124 | necomd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → sup ( ran 𝐹 , ℝ , < ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 126 | 117 112 123 125 | leneltd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ) |
| 127 | 117 112 | posdifd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ↔ 0 < ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 128 | 126 127 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 0 < ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 129 | 128 | gt0ne0d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ≠ 0 ) |
| 130 | 118 129 | rereccld | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 131 | 109 91 92 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) |
| 132 | letr | ⊢ ( ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℝ ) → ( ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ∧ 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) | |
| 133 | 130 109 131 132 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ∧ 𝑥 ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 134 | 111 133 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 135 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 136 | 135 | oveq2d | ⊢ ( 𝑧 = 𝑦 → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) = ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 137 | 136 | oveq2d | ⊢ ( 𝑧 = 𝑦 → ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) = ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 138 | eqid | ⊢ ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 139 | ovex | ⊢ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ∈ V | |
| 140 | 137 138 139 | fvmpt | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) = ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 141 | 140 | breq1d | ⊢ ( 𝑦 ∈ 𝑋 → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ) ) |
| 142 | 141 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ 𝑥 ) ) |
| 143 | 102 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ) |
| 144 | 100 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 0 < if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 145 | 131 144 | recgt0d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → 0 < ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 146 | lerec | ⊢ ( ( ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ∧ 0 < ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ∧ ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ 0 < ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) | |
| 147 | 143 145 118 128 146 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 148 | lesub | ⊢ ( ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ∈ ℝ ∧ sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) | |
| 149 | 143 112 117 148 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 150 | 131 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ∈ ℂ ) |
| 151 | 101 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ≠ 0 ) |
| 152 | 150 151 | recrecd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) = if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) |
| 153 | 152 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ ( 1 / ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 154 | 147 149 153 | 3bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑦 ) ) ) ≤ if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) |
| 155 | 134 142 154 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 156 | 155 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 157 | 156 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 158 | 34 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ) |
| 159 | suprleub | ⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) | |
| 160 | 158 106 159 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 161 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn 𝑋 ) |
| 162 | breq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) | |
| 163 | 162 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 164 | 161 163 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran 𝐹 𝑧 ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 165 | 160 164 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 166 | 157 165 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 → sup ( ran 𝐹 , ℝ , < ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 1 / if ( 1 ≤ 𝑥 , 𝑥 , 1 ) ) ) ) ) |
| 167 | 108 166 | mtod | ⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 168 | 167 | nrexdv | ⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ ( 1 / ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 169 | 88 168 | pm2.65da | ⊢ ( 𝜑 → ¬ 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) |
| 170 | 122 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 171 | breq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = sup ( ran 𝐹 , ℝ , < ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) ) | |
| 172 | 171 | ralbidv | ⊢ ( ( 𝐹 ‘ 𝑥 ) = sup ( ran 𝐹 , ℝ , < ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 173 | 170 172 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) = sup ( ran 𝐹 , ℝ , < ) → ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 174 | 173 | necon3bd | ⊢ ( 𝜑 → ( ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 175 | 174 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 176 | 20 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 177 | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) | |
| 178 | 177 | baib | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 179 | 176 178 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ sup ( ran 𝐹 , ℝ , < ) ) ) |
| 180 | 175 179 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 181 | 180 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 182 | ffnfv | ⊢ ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ( 𝐹 Fn 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) | |
| 183 | 182 | baib | ⊢ ( 𝐹 Fn 𝑋 → ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 184 | 28 183 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 185 | 181 184 | sylibrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) → 𝐹 : 𝑋 ⟶ ( ℝ ∖ { sup ( ran 𝐹 , ℝ , < ) } ) ) ) |
| 186 | 169 185 | mtod | ⊢ ( 𝜑 → ¬ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 187 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝑋 ¬ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) | |
| 188 | 186 187 | sylibr | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |