This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.29r

Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion r19.29r ( ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 iba ( 𝜓 → ( 𝜑 ↔ ( 𝜑𝜓 ) ) )
2 1 ralrexbid ( ∀ 𝑥𝐴 𝜓 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 ( 𝜑𝜓 ) ) )
3 2 biimpac ( ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )