This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.29r | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba | ⊢ ( 𝜓 → ( 𝜑 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | 1 | ralrexbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) |
| 3 | 2 | biimpac | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |