This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -u F .) (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bndth.1 | |- X = U. J |
|
| bndth.2 | |- K = ( topGen ` ran (,) ) |
||
| bndth.3 | |- ( ph -> J e. Comp ) |
||
| bndth.4 | |- ( ph -> F e. ( J Cn K ) ) |
||
| Assertion | bndth | |- ( ph -> E. x e. RR A. y e. X ( F ` y ) <_ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bndth.1 | |- X = U. J |
|
| 2 | bndth.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | bndth.3 | |- ( ph -> J e. Comp ) |
|
| 4 | bndth.4 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 5 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 6 | 2 5 | eqeltri | |- K e. ( TopOn ` RR ) |
| 7 | 6 | toponunii | |- RR = U. K |
| 8 | 1 7 | cnf | |- ( F e. ( J Cn K ) -> F : X --> RR ) |
| 9 | 4 8 | syl | |- ( ph -> F : X --> RR ) |
| 10 | 9 | frnd | |- ( ph -> ran F C_ RR ) |
| 11 | unieq | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> U. u = U. ( (,) " ( { -oo } X. RR ) ) ) |
|
| 12 | imassrn | |- ( (,) " ( { -oo } X. RR ) ) C_ ran (,) |
|
| 13 | 12 | unissi | |- U. ( (,) " ( { -oo } X. RR ) ) C_ U. ran (,) |
| 14 | unirnioo | |- RR = U. ran (,) |
|
| 15 | 13 14 | sseqtrri | |- U. ( (,) " ( { -oo } X. RR ) ) C_ RR |
| 16 | id | |- ( x e. RR -> x e. RR ) |
|
| 17 | ltp1 | |- ( x e. RR -> x < ( x + 1 ) ) |
|
| 18 | ressxr | |- RR C_ RR* |
|
| 19 | peano2re | |- ( x e. RR -> ( x + 1 ) e. RR ) |
|
| 20 | 18 19 | sselid | |- ( x e. RR -> ( x + 1 ) e. RR* ) |
| 21 | elioomnf | |- ( ( x + 1 ) e. RR* -> ( x e. ( -oo (,) ( x + 1 ) ) <-> ( x e. RR /\ x < ( x + 1 ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( x e. RR -> ( x e. ( -oo (,) ( x + 1 ) ) <-> ( x e. RR /\ x < ( x + 1 ) ) ) ) |
| 23 | 16 17 22 | mpbir2and | |- ( x e. RR -> x e. ( -oo (,) ( x + 1 ) ) ) |
| 24 | df-ov | |- ( -oo (,) ( x + 1 ) ) = ( (,) ` <. -oo , ( x + 1 ) >. ) |
|
| 25 | mnfxr | |- -oo e. RR* |
|
| 26 | 25 | elexi | |- -oo e. _V |
| 27 | 26 | snid | |- -oo e. { -oo } |
| 28 | opelxpi | |- ( ( -oo e. { -oo } /\ ( x + 1 ) e. RR ) -> <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) ) |
|
| 29 | 27 19 28 | sylancr | |- ( x e. RR -> <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) ) |
| 30 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 31 | ffun | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
|
| 32 | 30 31 | ax-mp | |- Fun (,) |
| 33 | snssi | |- ( -oo e. RR* -> { -oo } C_ RR* ) |
|
| 34 | 25 33 | ax-mp | |- { -oo } C_ RR* |
| 35 | xpss12 | |- ( ( { -oo } C_ RR* /\ RR C_ RR* ) -> ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) |
|
| 36 | 34 18 35 | mp2an | |- ( { -oo } X. RR ) C_ ( RR* X. RR* ) |
| 37 | 30 | fdmi | |- dom (,) = ( RR* X. RR* ) |
| 38 | 36 37 | sseqtrri | |- ( { -oo } X. RR ) C_ dom (,) |
| 39 | funfvima2 | |- ( ( Fun (,) /\ ( { -oo } X. RR ) C_ dom (,) ) -> ( <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) -> ( (,) ` <. -oo , ( x + 1 ) >. ) e. ( (,) " ( { -oo } X. RR ) ) ) ) |
|
| 40 | 32 38 39 | mp2an | |- ( <. -oo , ( x + 1 ) >. e. ( { -oo } X. RR ) -> ( (,) ` <. -oo , ( x + 1 ) >. ) e. ( (,) " ( { -oo } X. RR ) ) ) |
| 41 | 29 40 | syl | |- ( x e. RR -> ( (,) ` <. -oo , ( x + 1 ) >. ) e. ( (,) " ( { -oo } X. RR ) ) ) |
| 42 | 24 41 | eqeltrid | |- ( x e. RR -> ( -oo (,) ( x + 1 ) ) e. ( (,) " ( { -oo } X. RR ) ) ) |
| 43 | elunii | |- ( ( x e. ( -oo (,) ( x + 1 ) ) /\ ( -oo (,) ( x + 1 ) ) e. ( (,) " ( { -oo } X. RR ) ) ) -> x e. U. ( (,) " ( { -oo } X. RR ) ) ) |
|
| 44 | 23 42 43 | syl2anc | |- ( x e. RR -> x e. U. ( (,) " ( { -oo } X. RR ) ) ) |
| 45 | 44 | ssriv | |- RR C_ U. ( (,) " ( { -oo } X. RR ) ) |
| 46 | 15 45 | eqssi | |- U. ( (,) " ( { -oo } X. RR ) ) = RR |
| 47 | 11 46 | eqtrdi | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> U. u = RR ) |
| 48 | 47 | sseq2d | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> ( ran F C_ U. u <-> ran F C_ RR ) ) |
| 49 | pweq | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> ~P u = ~P ( (,) " ( { -oo } X. RR ) ) ) |
|
| 50 | 49 | ineq1d | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> ( ~P u i^i Fin ) = ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) |
| 51 | 50 | rexeqdv | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> ( E. v e. ( ~P u i^i Fin ) ran F C_ U. v <-> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) ) |
| 52 | 48 51 | imbi12d | |- ( u = ( (,) " ( { -oo } X. RR ) ) -> ( ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) <-> ( ran F C_ RR -> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) ) ) |
| 53 | rncmp | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ( K |`t ran F ) e. Comp ) |
|
| 54 | 3 4 53 | syl2anc | |- ( ph -> ( K |`t ran F ) e. Comp ) |
| 55 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 56 | 2 55 | eqeltri | |- K e. Top |
| 57 | 7 | cmpsub | |- ( ( K e. Top /\ ran F C_ RR ) -> ( ( K |`t ran F ) e. Comp <-> A. u e. ~P K ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) ) ) |
| 58 | 56 10 57 | sylancr | |- ( ph -> ( ( K |`t ran F ) e. Comp <-> A. u e. ~P K ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) ) ) |
| 59 | 54 58 | mpbid | |- ( ph -> A. u e. ~P K ( ran F C_ U. u -> E. v e. ( ~P u i^i Fin ) ran F C_ U. v ) ) |
| 60 | retopbas | |- ran (,) e. TopBases |
|
| 61 | bastg | |- ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) |
|
| 62 | 60 61 | ax-mp | |- ran (,) C_ ( topGen ` ran (,) ) |
| 63 | 62 2 | sseqtrri | |- ran (,) C_ K |
| 64 | 12 63 | sstri | |- ( (,) " ( { -oo } X. RR ) ) C_ K |
| 65 | 56 64 | elpwi2 | |- ( (,) " ( { -oo } X. RR ) ) e. ~P K |
| 66 | 65 | a1i | |- ( ph -> ( (,) " ( { -oo } X. RR ) ) e. ~P K ) |
| 67 | 52 59 66 | rspcdva | |- ( ph -> ( ran F C_ RR -> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) ) |
| 68 | 10 67 | mpd | |- ( ph -> E. v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ran F C_ U. v ) |
| 69 | simpr | |- ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) |
|
| 70 | elin | |- ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) <-> ( v e. ~P ( (,) " ( { -oo } X. RR ) ) /\ v e. Fin ) ) |
|
| 71 | 69 70 | sylib | |- ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> ( v e. ~P ( (,) " ( { -oo } X. RR ) ) /\ v e. Fin ) ) |
| 72 | 71 | adantrr | |- ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> ( v e. ~P ( (,) " ( { -oo } X. RR ) ) /\ v e. Fin ) ) |
| 73 | 72 | simprd | |- ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> v e. Fin ) |
| 74 | 71 | simpld | |- ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> v e. ~P ( (,) " ( { -oo } X. RR ) ) ) |
| 75 | 74 | elpwid | |- ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> v C_ ( (,) " ( { -oo } X. RR ) ) ) |
| 76 | 34 | sseli | |- ( u e. { -oo } -> u e. RR* ) |
| 77 | 76 | adantr | |- ( ( u e. { -oo } /\ w e. RR ) -> u e. RR* ) |
| 78 | 18 | sseli | |- ( w e. RR -> w e. RR* ) |
| 79 | 78 | adantl | |- ( ( u e. { -oo } /\ w e. RR ) -> w e. RR* ) |
| 80 | mnflt | |- ( w e. RR -> -oo < w ) |
|
| 81 | xrltnle | |- ( ( -oo e. RR* /\ w e. RR* ) -> ( -oo < w <-> -. w <_ -oo ) ) |
|
| 82 | 25 78 81 | sylancr | |- ( w e. RR -> ( -oo < w <-> -. w <_ -oo ) ) |
| 83 | 80 82 | mpbid | |- ( w e. RR -> -. w <_ -oo ) |
| 84 | 83 | adantl | |- ( ( u e. { -oo } /\ w e. RR ) -> -. w <_ -oo ) |
| 85 | elsni | |- ( u e. { -oo } -> u = -oo ) |
|
| 86 | 85 | adantr | |- ( ( u e. { -oo } /\ w e. RR ) -> u = -oo ) |
| 87 | 86 | breq2d | |- ( ( u e. { -oo } /\ w e. RR ) -> ( w <_ u <-> w <_ -oo ) ) |
| 88 | 84 87 | mtbird | |- ( ( u e. { -oo } /\ w e. RR ) -> -. w <_ u ) |
| 89 | ioo0 | |- ( ( u e. RR* /\ w e. RR* ) -> ( ( u (,) w ) = (/) <-> w <_ u ) ) |
|
| 90 | 76 78 89 | syl2an | |- ( ( u e. { -oo } /\ w e. RR ) -> ( ( u (,) w ) = (/) <-> w <_ u ) ) |
| 91 | 90 | necon3abid | |- ( ( u e. { -oo } /\ w e. RR ) -> ( ( u (,) w ) =/= (/) <-> -. w <_ u ) ) |
| 92 | 88 91 | mpbird | |- ( ( u e. { -oo } /\ w e. RR ) -> ( u (,) w ) =/= (/) ) |
| 93 | df-ioo | |- (,) = ( y e. RR* , z e. RR* |-> { v e. RR* | ( y < v /\ v < z ) } ) |
|
| 94 | idd | |- ( ( x e. RR* /\ w e. RR* ) -> ( x < w -> x < w ) ) |
|
| 95 | xrltle | |- ( ( x e. RR* /\ w e. RR* ) -> ( x < w -> x <_ w ) ) |
|
| 96 | idd | |- ( ( u e. RR* /\ x e. RR* ) -> ( u < x -> u < x ) ) |
|
| 97 | xrltle | |- ( ( u e. RR* /\ x e. RR* ) -> ( u < x -> u <_ x ) ) |
|
| 98 | 93 94 95 96 97 | ixxub | |- ( ( u e. RR* /\ w e. RR* /\ ( u (,) w ) =/= (/) ) -> sup ( ( u (,) w ) , RR* , < ) = w ) |
| 99 | 77 79 92 98 | syl3anc | |- ( ( u e. { -oo } /\ w e. RR ) -> sup ( ( u (,) w ) , RR* , < ) = w ) |
| 100 | simpr | |- ( ( u e. { -oo } /\ w e. RR ) -> w e. RR ) |
|
| 101 | 99 100 | eqeltrd | |- ( ( u e. { -oo } /\ w e. RR ) -> sup ( ( u (,) w ) , RR* , < ) e. RR ) |
| 102 | 101 | rgen2 | |- A. u e. { -oo } A. w e. RR sup ( ( u (,) w ) , RR* , < ) e. RR |
| 103 | fveq2 | |- ( z = <. u , w >. -> ( (,) ` z ) = ( (,) ` <. u , w >. ) ) |
|
| 104 | df-ov | |- ( u (,) w ) = ( (,) ` <. u , w >. ) |
|
| 105 | 103 104 | eqtr4di | |- ( z = <. u , w >. -> ( (,) ` z ) = ( u (,) w ) ) |
| 106 | 105 | supeq1d | |- ( z = <. u , w >. -> sup ( ( (,) ` z ) , RR* , < ) = sup ( ( u (,) w ) , RR* , < ) ) |
| 107 | 106 | eleq1d | |- ( z = <. u , w >. -> ( sup ( ( (,) ` z ) , RR* , < ) e. RR <-> sup ( ( u (,) w ) , RR* , < ) e. RR ) ) |
| 108 | 107 | ralxp | |- ( A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR <-> A. u e. { -oo } A. w e. RR sup ( ( u (,) w ) , RR* , < ) e. RR ) |
| 109 | 102 108 | mpbir | |- A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR |
| 110 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 111 | 30 110 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 112 | supeq1 | |- ( w = ( (,) ` z ) -> sup ( w , RR* , < ) = sup ( ( (,) ` z ) , RR* , < ) ) |
|
| 113 | 112 | eleq1d | |- ( w = ( (,) ` z ) -> ( sup ( w , RR* , < ) e. RR <-> sup ( ( (,) ` z ) , RR* , < ) e. RR ) ) |
| 114 | 113 | ralima | |- ( ( (,) Fn ( RR* X. RR* ) /\ ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) -> ( A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR <-> A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR ) ) |
| 115 | 111 36 114 | mp2an | |- ( A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR <-> A. z e. ( { -oo } X. RR ) sup ( ( (,) ` z ) , RR* , < ) e. RR ) |
| 116 | 109 115 | mpbir | |- A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR |
| 117 | ssralv | |- ( v C_ ( (,) " ( { -oo } X. RR ) ) -> ( A. w e. ( (,) " ( { -oo } X. RR ) ) sup ( w , RR* , < ) e. RR -> A. w e. v sup ( w , RR* , < ) e. RR ) ) |
|
| 118 | 75 116 117 | mpisyl | |- ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) -> A. w e. v sup ( w , RR* , < ) e. RR ) |
| 119 | 118 | adantrr | |- ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> A. w e. v sup ( w , RR* , < ) e. RR ) |
| 120 | fimaxre3 | |- ( ( v e. Fin /\ A. w e. v sup ( w , RR* , < ) e. RR ) -> E. x e. RR A. w e. v sup ( w , RR* , < ) <_ x ) |
|
| 121 | 73 119 120 | syl2anc | |- ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> E. x e. RR A. w e. v sup ( w , RR* , < ) <_ x ) |
| 122 | simplrr | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ran F C_ U. v ) |
|
| 123 | 122 | sselda | |- ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ z e. ran F ) -> z e. U. v ) |
| 124 | eluni2 | |- ( z e. U. v <-> E. w e. v z e. w ) |
|
| 125 | r19.29r | |- ( ( E. w e. v z e. w /\ A. w e. v sup ( w , RR* , < ) <_ x ) -> E. w e. v ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) |
|
| 126 | sspwuni | |- ( ( (,) " ( { -oo } X. RR ) ) C_ ~P RR <-> U. ( (,) " ( { -oo } X. RR ) ) C_ RR ) |
|
| 127 | 15 126 | mpbir | |- ( (,) " ( { -oo } X. RR ) ) C_ ~P RR |
| 128 | 75 | 3ad2ant1 | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> v C_ ( (,) " ( { -oo } X. RR ) ) ) |
| 129 | simp2r | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w e. v ) |
|
| 130 | 128 129 | sseldd | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w e. ( (,) " ( { -oo } X. RR ) ) ) |
| 131 | 127 130 | sselid | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w e. ~P RR ) |
| 132 | 131 | elpwid | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w C_ RR ) |
| 133 | simp3l | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z e. w ) |
|
| 134 | 132 133 | sseldd | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z e. RR ) |
| 135 | 118 | r19.21bi | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ w e. v ) -> sup ( w , RR* , < ) e. RR ) |
| 136 | 135 | adantrl | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) ) -> sup ( w , RR* , < ) e. RR ) |
| 137 | 136 | 3adant3 | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> sup ( w , RR* , < ) e. RR ) |
| 138 | simp2l | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> x e. RR ) |
|
| 139 | 132 18 | sstrdi | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> w C_ RR* ) |
| 140 | supxrub | |- ( ( w C_ RR* /\ z e. w ) -> z <_ sup ( w , RR* , < ) ) |
|
| 141 | 139 133 140 | syl2anc | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z <_ sup ( w , RR* , < ) ) |
| 142 | simp3r | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> sup ( w , RR* , < ) <_ x ) |
|
| 143 | 134 137 138 141 142 | letrd | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) /\ ( z e. w /\ sup ( w , RR* , < ) <_ x ) ) -> z <_ x ) |
| 144 | 143 | 3expia | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ ( x e. RR /\ w e. v ) ) -> ( ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) |
| 145 | 144 | anassrs | |- ( ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ x e. RR ) /\ w e. v ) -> ( ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) |
| 146 | 145 | rexlimdva | |- ( ( ( ph /\ v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) ) /\ x e. RR ) -> ( E. w e. v ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) |
| 147 | 146 | adantlrr | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( E. w e. v ( z e. w /\ sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) |
| 148 | 125 147 | syl5 | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( ( E. w e. v z e. w /\ A. w e. v sup ( w , RR* , < ) <_ x ) -> z <_ x ) ) |
| 149 | 148 | expdimp | |- ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ E. w e. v z e. w ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> z <_ x ) ) |
| 150 | 124 149 | sylan2b | |- ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ z e. U. v ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> z <_ x ) ) |
| 151 | 123 150 | syldan | |- ( ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) /\ z e. ran F ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> z <_ x ) ) |
| 152 | 151 | ralrimdva | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> A. z e. ran F z <_ x ) ) |
| 153 | 9 | ffnd | |- ( ph -> F Fn X ) |
| 154 | 153 | ad2antrr | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> F Fn X ) |
| 155 | breq1 | |- ( z = ( F ` y ) -> ( z <_ x <-> ( F ` y ) <_ x ) ) |
|
| 156 | 155 | ralrn | |- ( F Fn X -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) |
| 157 | 154 156 | syl | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) |
| 158 | 152 157 | sylibd | |- ( ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) /\ x e. RR ) -> ( A. w e. v sup ( w , RR* , < ) <_ x -> A. y e. X ( F ` y ) <_ x ) ) |
| 159 | 158 | reximdva | |- ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> ( E. x e. RR A. w e. v sup ( w , RR* , < ) <_ x -> E. x e. RR A. y e. X ( F ` y ) <_ x ) ) |
| 160 | 121 159 | mpd | |- ( ( ph /\ ( v e. ( ~P ( (,) " ( { -oo } X. RR ) ) i^i Fin ) /\ ran F C_ U. v ) ) -> E. x e. RR A. y e. X ( F ` y ) <_ x ) |
| 161 | 68 160 | rexlimddv | |- ( ph -> E. x e. RR A. y e. X ( F ` y ) <_ x ) |