This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for blocni and lnocni . If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007) (Revised by Mario Carneiro, 10-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocni.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| blocni.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| blocni.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| blocni.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| blocni.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| blocni.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| blocni.u | ⊢ 𝑈 ∈ NrmCVec | ||
| blocni.w | ⊢ 𝑊 ∈ NrmCVec | ||
| blocni.l | ⊢ 𝑇 ∈ 𝐿 | ||
| blocnilem.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | ||
| Assertion | blocnilem | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocni.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 2 | blocni.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | blocni.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 4 | blocni.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 5 | blocni.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 6 | blocni.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 7 | blocni.u | ⊢ 𝑈 ∈ NrmCVec | |
| 8 | blocni.w | ⊢ 𝑊 ∈ NrmCVec | |
| 9 | blocni.l | ⊢ 𝑇 ∈ 𝐿 | |
| 10 | blocnilem.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 11 | 10 1 | imsxmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 12 | 7 11 | ax-mp | ⊢ 𝐶 ∈ ( ∞Met ‘ 𝑋 ) |
| 13 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 14 | 13 2 | imsxmet | ⊢ ( 𝑊 ∈ NrmCVec → 𝐷 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 15 | 8 14 | ax-mp | ⊢ 𝐷 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) |
| 16 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 17 | 3 4 | metcnpi3 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) ∧ ( 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 1 ∈ ℝ+ ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ) |
| 18 | 16 17 | mpanr2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ) |
| 19 | 12 15 18 | mpanl12 | ⊢ ( 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ) |
| 20 | rpreccl | ⊢ ( 𝑦 ∈ ℝ+ → ( 1 / 𝑦 ) ∈ ℝ+ ) | |
| 21 | 20 | rpred | ⊢ ( 𝑦 ∈ ℝ+ → ( 1 / 𝑦 ) ∈ ℝ ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 23 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 24 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 25 | 10 23 24 1 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑃 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) |
| 26 | 7 25 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 𝐶 𝑃 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) |
| 27 | 26 | breq1d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 ↔ ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 ) ) |
| 28 | 10 13 5 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 29 | 7 8 9 28 | mp3an | ⊢ 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) |
| 30 | 29 | ffvelcdmi | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑇 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 31 | 29 | ffvelcdmi | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑇 ‘ 𝑃 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 32 | eqid | ⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) | |
| 33 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 34 | 13 32 33 2 | imsdval | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑇 ‘ 𝑃 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 35 | 8 34 | mp3an1 | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑇 ‘ 𝑃 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 36 | 30 31 35 | syl2an | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 37 | 7 8 9 | 3pm3.2i | ⊢ ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) |
| 38 | 10 23 32 5 | lnosub | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) |
| 39 | 37 38 | mpan | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) |
| 40 | 39 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑥 ) ( −𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑃 ) ) ) ) |
| 41 | 36 40 | eqtr4d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ) |
| 42 | 41 | breq1d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) |
| 43 | 27 42 | imbi12d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ↔ ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 44 | 43 | ancoms | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ↔ ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 45 | 44 | adantlr | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ↔ ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 46 | 45 | ralbidva | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 47 | 2fveq3 | ⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ) | |
| 48 | fveq2 | ⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) | |
| 49 | 48 | oveq2d | ⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) |
| 50 | 47 49 | breq12d | ⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) ) |
| 51 | 7 | a1i | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑈 ∈ NrmCVec ) |
| 52 | simpll | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑃 ∈ 𝑋 ) | |
| 53 | simpr | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 54 | 10 24 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 55 | 7 54 | mpan | ⊢ ( 𝑧 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 56 | 55 | adantr | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 57 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 58 | 10 57 24 | nvgt0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ≠ ( 0vec ‘ 𝑈 ) ↔ 0 < ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 59 | 7 58 | mpan | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝑧 ≠ ( 0vec ‘ 𝑈 ) ↔ 0 < ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 60 | 59 | biimpa | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) → 0 < ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) |
| 61 | 56 60 | elrpd | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ+ ) |
| 62 | rpdivcl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ+ ) → ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℝ+ ) | |
| 63 | 53 61 62 | syl2an | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℝ+ ) |
| 64 | 63 | rpcnd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℂ ) |
| 65 | simprl | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑧 ∈ 𝑋 ) | |
| 66 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 67 | 10 66 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 68 | 51 64 65 67 | syl3anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 69 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 70 | 10 69 23 | nvpncan2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) |
| 71 | 51 52 68 70 | syl3anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) |
| 72 | 71 | fveq2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ) |
| 73 | 63 | rprege0d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 74 | 10 66 24 | nvsge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 75 | 51 73 65 74 | syl3anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 76 | rpcn | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) | |
| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑦 ∈ ℂ ) |
| 78 | 55 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 79 | 78 | recnd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ) |
| 80 | 10 57 24 | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) = 0 ↔ 𝑧 = ( 0vec ‘ 𝑈 ) ) ) |
| 81 | 7 80 | mpan | ⊢ ( 𝑧 ∈ 𝑋 → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) = 0 ↔ 𝑧 = ( 0vec ‘ 𝑈 ) ) ) |
| 82 | 81 | necon3bid | ⊢ ( 𝑧 ∈ 𝑋 → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≠ 0 ↔ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) |
| 83 | 82 | biimpar | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≠ 0 ) |
| 84 | 83 | adantl | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≠ 0 ) |
| 85 | 77 79 84 | divcan1d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = 𝑦 ) |
| 86 | 72 75 85 | 3eqtrd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = 𝑦 ) |
| 87 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 88 | 87 | leidd | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ≤ 𝑦 ) |
| 89 | 88 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑦 ≤ 𝑦 ) |
| 90 | 86 89 | eqbrtrd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 ) |
| 91 | 10 69 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) → ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ∈ 𝑋 ) |
| 92 | 51 52 68 91 | syl3anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ∈ 𝑋 ) |
| 93 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) | |
| 94 | 93 | breq1d | ⊢ ( 𝑥 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 ↔ ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 ) ) |
| 95 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) → ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) | |
| 96 | 95 | fveq2d | ⊢ ( 𝑥 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ) |
| 97 | 96 | breq1d | ⊢ ( 𝑥 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) → ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) |
| 98 | 94 97 | imbi12d | ⊢ ( 𝑥 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ↔ ( ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 99 | 98 | rspcv | ⊢ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 100 | 92 99 | syl | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ) |
| 101 | 90 100 | mpid | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) |
| 102 | 29 | ffvelcdmi | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝑇 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 103 | 13 33 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 104 | 8 102 103 | sylancr | ⊢ ( 𝑧 ∈ 𝑋 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 105 | 104 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 106 | 1red | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 1 ∈ ℝ ) | |
| 107 | 105 106 63 | lemuldiv2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ≤ 1 ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 1 / ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) ) |
| 108 | 71 | fveq2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( 𝑇 ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ) |
| 109 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 110 | 10 66 109 5 | lnomul | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) |
| 111 | 37 110 | mpan | ⊢ ( ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑇 ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) |
| 112 | 64 65 111 | syl2anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑇 ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) |
| 113 | 108 112 | eqtrd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) |
| 114 | 113 | fveq2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 115 | 8 | a1i | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑊 ∈ NrmCVec ) |
| 116 | 102 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 𝑇 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 117 | 13 109 33 | nvsge0 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ∧ ( 𝑇 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 118 | 115 73 116 117 | syl3anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 119 | 114 118 | eqtrd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) = ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 120 | 119 | breq1d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ↔ ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) · ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) ≤ 1 ) ) |
| 121 | rpcnne0 | ⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 122 | rpcnne0 | ⊢ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ+ → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≠ 0 ) ) | |
| 123 | recdiv | ⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≠ 0 ) ) → ( 1 / ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) / 𝑦 ) ) | |
| 124 | 121 122 123 | syl2an | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ+ ) → ( 1 / ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) / 𝑦 ) ) |
| 125 | 53 61 124 | syl2an | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( 1 / ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) / 𝑦 ) ) |
| 126 | rpne0 | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ≠ 0 ) | |
| 127 | 126 | ad2antlr | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → 𝑦 ≠ 0 ) |
| 128 | 79 77 127 | divrec2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) / 𝑦 ) = ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 129 | 125 128 | eqtr2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( 1 / ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 130 | 129 | breq2d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 1 / ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) ) |
| 131 | 107 120 130 | 3bitr4d | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( ( 𝑦 / ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 132 | 101 131 | sylibd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 133 | 132 | anassrs | ⊢ ( ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 134 | 133 | imp | ⊢ ( ( ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 135 | 134 | an32s | ⊢ ( ( ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) ∧ 𝑧 ≠ ( 0vec ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 136 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 137 | 10 13 57 136 5 | lno0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) = ( 0vec ‘ 𝑊 ) ) |
| 138 | 7 8 9 137 | mp3an | ⊢ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) = ( 0vec ‘ 𝑊 ) |
| 139 | 138 | fveq2i | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) |
| 140 | 136 33 | nvz0 | ⊢ ( 𝑊 ∈ NrmCVec → ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) = 0 ) |
| 141 | 8 140 | ax-mp | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) = 0 |
| 142 | 139 141 | eqtri | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) = 0 |
| 143 | 0le0 | ⊢ 0 ≤ 0 | |
| 144 | 142 143 | eqbrtri | ⊢ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ 0 |
| 145 | 20 | rpcnd | ⊢ ( 𝑦 ∈ ℝ+ → ( 1 / 𝑦 ) ∈ ℂ ) |
| 146 | 57 24 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
| 147 | 7 146 | ax-mp | ⊢ ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) = 0 |
| 148 | 147 | oveq2i | ⊢ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) = ( ( 1 / 𝑦 ) · 0 ) |
| 149 | mul01 | ⊢ ( ( 1 / 𝑦 ) ∈ ℂ → ( ( 1 / 𝑦 ) · 0 ) = 0 ) | |
| 150 | 148 149 | eqtrid | ⊢ ( ( 1 / 𝑦 ) ∈ ℂ → ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) = 0 ) |
| 151 | 145 150 | syl | ⊢ ( 𝑦 ∈ ℝ+ → ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) = 0 ) |
| 152 | 144 151 | breqtrrid | ⊢ ( 𝑦 ∈ ℝ+ → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) |
| 153 | 152 | ad3antlr | ⊢ ( ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) ) |
| 154 | 50 135 153 | pm2.61ne | ⊢ ( ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 155 | 154 | ex | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 156 | 155 | ralrimdva | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ≤ 𝑦 → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑥 ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) ≤ 1 ) → ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 157 | 46 156 | sylbid | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) → ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 158 | 157 | imp | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ) → ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 159 | oveq1 | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) | |
| 160 | 159 | breq2d | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ↔ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 161 | 160 | ralbidv | ⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 162 | 161 | rspcev | ⊢ ( ( ( 1 / 𝑦 ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( 1 / 𝑦 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 163 | 22 158 162 | syl2anc | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 164 | 163 | rexlimdva2 | ⊢ ( 𝑃 ∈ 𝑋 → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐶 𝑃 ) ≤ 𝑦 → ( ( 𝑇 ‘ 𝑥 ) 𝐷 ( 𝑇 ‘ 𝑃 ) ) ≤ 1 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 165 | 19 164 | syl5 | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 166 | 165 | imp | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 167 | 10 24 33 5 6 7 8 | isblo3i | ⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) ) |
| 168 | 9 167 | mpbiran | ⊢ ( 𝑇 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑋 ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 169 | 166 168 | sylibr | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ 𝐵 ) |