This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocni.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| blocni.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| blocni.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| blocni.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| blocni.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| blocni.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| blocni.u | ⊢ 𝑈 ∈ NrmCVec | ||
| blocni.w | ⊢ 𝑊 ∈ NrmCVec | ||
| blocni.l | ⊢ 𝑇 ∈ 𝐿 | ||
| lnocni.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | ||
| Assertion | lnocni | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocni.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 2 | blocni.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | blocni.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 4 | blocni.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 5 | blocni.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 6 | blocni.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 7 | blocni.u | ⊢ 𝑈 ∈ NrmCVec | |
| 8 | blocni.w | ⊢ 𝑊 ∈ NrmCVec | |
| 9 | blocni.l | ⊢ 𝑇 ∈ 𝐿 | |
| 10 | lnocni.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | blocnilem | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ 𝐵 ) |
| 12 | 1 2 3 4 5 6 7 8 9 | blocni | ⊢ ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) |