This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Epsilon-delta property of a metric space function continuous at P . A variation of metcnpi2 with non-strict ordering. (Contributed by NM, 16-Dec-2007) (Revised by Mario Carneiro, 13-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metcnpi3 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 2 | metcnpi2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) |
| 4 | rphalfcl | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ ) | |
| 5 | 4 | ad2antrl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) → ( 𝑧 / 2 ) ∈ ℝ+ ) |
| 6 | simplll | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | simprr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 8 | simplrl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) | |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | cnprcl | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 11 | 8 10 | syl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑃 ∈ ∪ 𝐽 ) |
| 12 | 1 | mopnuni | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 13 | 6 12 | syl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 = ∪ 𝐽 ) |
| 14 | 11 13 | eleqtrrd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑃 ∈ 𝑋 ) |
| 15 | xmetcl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑦 𝐶 𝑃 ) ∈ ℝ* ) | |
| 16 | 6 7 14 15 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 𝐶 𝑃 ) ∈ ℝ* ) |
| 17 | 4 | ad2antrl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑧 / 2 ) ∈ ℝ+ ) |
| 18 | 17 | rpxrd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑧 / 2 ) ∈ ℝ* ) |
| 19 | rpxr | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ* ) | |
| 20 | 19 | ad2antrl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝑧 ∈ ℝ* ) |
| 21 | rphalflt | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) < 𝑧 ) | |
| 22 | 21 | ad2antrl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑧 / 2 ) < 𝑧 ) |
| 23 | xrlelttr | ⊢ ( ( ( 𝑦 𝐶 𝑃 ) ∈ ℝ* ∧ ( 𝑧 / 2 ) ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) ∧ ( 𝑧 / 2 ) < 𝑧 ) → ( 𝑦 𝐶 𝑃 ) < 𝑧 ) ) | |
| 24 | 23 | expcomd | ⊢ ( ( ( 𝑦 𝐶 𝑃 ) ∈ ℝ* ∧ ( 𝑧 / 2 ) ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑧 / 2 ) < 𝑧 → ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( 𝑦 𝐶 𝑃 ) < 𝑧 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ( 𝑦 𝐶 𝑃 ) ∈ ℝ* ∧ ( 𝑧 / 2 ) ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( 𝑧 / 2 ) < 𝑧 ) → ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( 𝑦 𝐶 𝑃 ) < 𝑧 ) ) |
| 26 | 16 18 20 22 25 | syl31anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( 𝑦 𝐶 𝑃 ) < 𝑧 ) ) |
| 27 | simpllr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 28 | 1 | mopntopon | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 29 | 6 28 | syl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 30 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 31 | 27 30 | syl | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 32 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 33 | 29 31 8 32 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 34 | 33 7 | ffvelcdmd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 35 | 33 14 | ffvelcdmd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) |
| 36 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ* ) | |
| 37 | 27 34 35 36 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ* ) |
| 38 | simplrr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 ∈ ℝ+ ) | |
| 39 | 38 | rpxrd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → 𝐴 ∈ ℝ* ) |
| 40 | xrltle | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) | |
| 41 | 37 39 40 | syl2anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) |
| 42 | 26 41 | imim12d | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) → ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) ) |
| 43 | 42 | anassrs | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) → ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) ) |
| 44 | 43 | ralimdva | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) → ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) ) |
| 45 | 44 | impr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) → ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) |
| 46 | breq2 | ⊢ ( 𝑥 = ( 𝑧 / 2 ) → ( ( 𝑦 𝐶 𝑃 ) ≤ 𝑥 ↔ ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) ) ) | |
| 47 | 46 | rspceaimv | ⊢ ( ( ( 𝑧 / 2 ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ ( 𝑧 / 2 ) → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) |
| 48 | 5 45 47 | syl2anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) ∧ ( 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) |
| 49 | 3 48 | rexlimddv | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) ≤ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ≤ 𝐴 ) ) |