This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recdiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 2 | 1 | oveq1i | ⊢ ( ( 1 / 1 ) / ( 𝐴 / 𝐵 ) ) = ( 1 / ( 𝐴 / 𝐵 ) ) |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 5 | 3 4 | pm3.2i | ⊢ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) |
| 6 | divdivdiv | ⊢ ( ( ( 1 ∈ ℂ ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) ∧ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ) → ( ( 1 / 1 ) / ( 𝐴 / 𝐵 ) ) = ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) ) | |
| 7 | 3 5 6 | mpanl12 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 1 ) / ( 𝐴 / 𝐵 ) ) = ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) ) |
| 8 | 2 7 | eqtr3id | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) ) |
| 9 | mullid | ⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) | |
| 10 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 11 | 9 10 | oveqan12rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) = ( 𝐵 / 𝐴 ) ) |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 · 𝐵 ) / ( 1 · 𝐴 ) ) = ( 𝐵 / 𝐴 ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) |