This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of Kreyszig p. 91. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isblo3i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| isblo3i.m | ⊢ 𝑀 = ( normCV ‘ 𝑈 ) | ||
| isblo3i.n | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | ||
| isblo3i.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| isblo3i.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| isblo3i.u | ⊢ 𝑈 ∈ NrmCVec | ||
| isblo3i.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | isblo3i | ⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isblo3i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | isblo3i.m | ⊢ 𝑀 = ( normCV ‘ 𝑈 ) | |
| 3 | isblo3i.n | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | |
| 4 | isblo3i.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 5 | isblo3i.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 6 | isblo3i.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | isblo3i.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 4 5 | bloln | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ 𝐿 ) |
| 9 | 6 7 8 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ 𝐿 ) |
| 10 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) | |
| 12 | 1 10 11 5 | nmblore | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ ) |
| 13 | 6 7 12 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐵 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ ) |
| 14 | 1 2 3 11 5 6 7 | nmblolbi | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝑇 ∈ 𝐵 → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) → ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) = ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) | |
| 17 | 16 | breq2d | ⊢ ( 𝑥 = ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( 𝑥 = ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 19 | 18 | rspcev | ⊢ ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) |
| 20 | 13 15 19 | syl2anc | ⊢ ( 𝑇 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) |
| 21 | 9 20 | jca | ⊢ ( 𝑇 ∈ 𝐵 → ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 22 | simp1 | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐿 ) | |
| 23 | 1 10 4 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 24 | 6 7 23 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐿 → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 25 | 1 10 11 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ* ) |
| 26 | 6 7 25 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ* ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ* ) |
| 28 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 29 | 28 | abscld | ⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 30 | 29 | rexrd | ⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) ∈ ℝ* ) |
| 31 | 30 | 3ad2ant2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( abs ‘ 𝑥 ) ∈ ℝ* ) |
| 32 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 33 | 32 | a1i | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → +∞ ∈ ℝ* ) |
| 34 | 1 10 2 3 11 6 7 | nmoub3i | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ≤ ( abs ‘ 𝑥 ) ) |
| 35 | ltpnf | ⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ → ( abs ‘ 𝑥 ) < +∞ ) | |
| 36 | 29 35 | syl | ⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) < +∞ ) |
| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( abs ‘ 𝑥 ) < +∞ ) |
| 38 | 27 31 33 34 37 | xrlelttrd | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) |
| 39 | 24 38 | syl3an1 | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) |
| 40 | 11 4 5 | isblo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) ) ) |
| 41 | 6 7 40 | mp2an | ⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) ) |
| 42 | 22 39 41 | sylanbrc | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
| 43 | 42 | rexlimdv3a | ⊢ ( 𝑇 ∈ 𝐿 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) → 𝑇 ∈ 𝐵 ) ) |
| 44 | 43 | imp | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
| 45 | 21 44 | impbii | ⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |