This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvz0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| nvz0.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ 𝑍 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvz0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 2 | nvz0.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 4 | 3 1 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 0le0 | ⊢ 0 ≤ 0 | |
| 7 | 5 6 | pm3.2i | ⊢ ( 0 ∈ ℝ ∧ 0 ≤ 0 ) |
| 8 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 9 | 3 8 2 | nvsge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 0 ∈ ℝ ∧ 0 ≤ 0 ) ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 0 · ( 𝑁 ‘ 𝑍 ) ) ) |
| 10 | 7 9 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 0 · ( 𝑁 ‘ 𝑍 ) ) ) |
| 11 | 4 10 | mpdan | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 0 · ( 𝑁 ‘ 𝑍 ) ) ) |
| 12 | 3 8 1 | nv0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 13 | 4 12 | mpdan | ⊢ ( 𝑈 ∈ NrmCVec → ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝑁 ‘ 𝑍 ) ) |
| 15 | 3 2 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑍 ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑍 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝑍 ) ∈ ℂ ) |
| 17 | 4 16 | mpdan | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ 𝑍 ) ∈ ℂ ) |
| 18 | 17 | mul02d | ⊢ ( 𝑈 ∈ NrmCVec → ( 0 · ( 𝑁 ‘ 𝑍 ) ) = 0 ) |
| 19 | 11 14 18 | 3eqtr3d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ 𝑍 ) = 0 ) |