This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for atanlogadd . (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanlogaddlem | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 3 | 2 | simp1bi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 4 | 3 | recld | ⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 5 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ( 0 < ( ℜ ‘ 𝐴 ) ∨ 0 = ( ℜ ‘ 𝐴 ) ) ) ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 0 ≤ ( ℜ ‘ 𝐴 ) ↔ ( 0 < ( ℜ ‘ 𝐴 ) ∨ 0 = ( ℜ ‘ 𝐴 ) ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℜ ‘ 𝐴 ) ∨ 0 = ( ℜ ‘ 𝐴 ) ) ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | ax-icn | ⊢ i ∈ ℂ | |
| 10 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 11 | 9 3 10 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
| 12 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 13 | 8 11 12 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 14 | 2 | simp3bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 15 | 13 14 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 16 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 17 | 8 11 16 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 18 | 2 | simp2bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 19 | 17 18 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 20 | 15 19 | addcld | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 22 | pire | ⊢ π ∈ ℝ | |
| 23 | 22 | renegcli | ⊢ - π ∈ ℝ |
| 24 | 23 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
| 25 | 19 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 26 | 25 | imcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ℝ ) |
| 27 | 15 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 28 | 27 | imcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℝ ) |
| 29 | 28 26 | readdcld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ∈ ℝ ) |
| 30 | 17 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 31 | im1 | ⊢ ( ℑ ‘ 1 ) = 0 | |
| 32 | 31 | oveq1i | ⊢ ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) = ( 0 − ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 33 | df-neg | ⊢ - ( ℑ ‘ ( i · 𝐴 ) ) = ( 0 − ( ℑ ‘ ( i · 𝐴 ) ) ) | |
| 34 | 32 33 | eqtr4i | ⊢ ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) = - ( ℑ ‘ ( i · 𝐴 ) ) |
| 35 | 11 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( i · 𝐴 ) ∈ ℂ ) |
| 36 | imsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) | |
| 37 | 8 35 36 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 38 | 3 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 39 | reim | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 41 | 40 | negeqd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( ℜ ‘ 𝐴 ) = - ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 42 | 34 37 41 | 3eqtr4a | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) = - ( ℜ ‘ 𝐴 ) ) |
| 43 | 4 | lt0neg2d | ⊢ ( 𝐴 ∈ dom arctan → ( 0 < ( ℜ ‘ 𝐴 ) ↔ - ( ℜ ‘ 𝐴 ) < 0 ) ) |
| 44 | 43 | biimpa | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( ℜ ‘ 𝐴 ) < 0 ) |
| 45 | 42 44 | eqbrtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) < 0 ) |
| 46 | argimlt0 | ⊢ ( ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ( ℑ ‘ ( 1 − ( i · 𝐴 ) ) ) < 0 ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ( - π (,) 0 ) ) | |
| 47 | 30 45 46 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ( - π (,) 0 ) ) |
| 48 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∧ ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) < 0 ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∧ ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) < 0 ) ) |
| 50 | 49 | simpld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 51 | 13 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 52 | simpr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) ) | |
| 53 | imadd | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) | |
| 54 | 8 35 53 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 55 | 40 | oveq2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ 1 ) + ( ℜ ‘ 𝐴 ) ) = ( ( ℑ ‘ 1 ) + ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 56 | 31 | oveq1i | ⊢ ( ( ℑ ‘ 1 ) + ( ℜ ‘ 𝐴 ) ) = ( 0 + ( ℜ ‘ 𝐴 ) ) |
| 57 | 38 | recld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 58 | 57 | recnd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 59 | 58 | addlidd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 + ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 60 | 56 59 | eqtrid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ 1 ) + ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 61 | 54 55 60 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 62 | 52 61 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 63 | argimgt0 | ⊢ ( ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ 0 < ( ℑ ‘ ( 1 + ( i · 𝐴 ) ) ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ( 0 (,) π ) ) | |
| 64 | 51 62 63 | syl2anc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ( 0 (,) π ) ) |
| 65 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∧ ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) < π ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∧ ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) < π ) ) |
| 67 | 66 | simpld | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 68 | 28 26 | ltaddpos2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ↔ ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) < ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) ) |
| 69 | 67 68 | mpbid | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) < ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 70 | 24 26 29 50 69 | lttrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 71 | 27 25 | imaddd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 72 | 70 71 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 73 | 22 | a1i | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 74 | 0red | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ ) | |
| 75 | 49 | simprd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) < 0 ) |
| 76 | 26 74 28 75 | ltadd2dd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) < ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + 0 ) ) |
| 77 | 28 | recnd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 78 | 77 | addridd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + 0 ) = ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 79 | 76 78 | breqtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) < ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 80 | 66 | simprd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) < π ) |
| 81 | 29 28 73 79 80 | lttrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) < π ) |
| 82 | 29 73 81 | ltled | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) + ( ℑ ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ≤ π ) |
| 83 | 71 82 | eqbrtrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ≤ π ) |
| 84 | ellogrn | ⊢ ( ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ↔ ( ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ∧ ( ℑ ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ≤ π ) ) | |
| 85 | 21 72 83 84 | syl3anbrc | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 86 | 0red | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ ) | |
| 87 | 11 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( i · 𝐴 ) ∈ ℂ ) |
| 88 | simpr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → 0 = ( ℜ ‘ 𝐴 ) ) | |
| 89 | 3 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 90 | 89 39 | syl | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 91 | 88 90 | eqtr2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) |
| 92 | 87 91 | reim0bd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( i · 𝐴 ) ∈ ℝ ) |
| 93 | 15 19 | addcomd | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 94 | 93 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 95 | logrncl | ⊢ ( ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ran log ) | |
| 96 | 17 18 95 | syl2anc | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ran log ) |
| 97 | 96 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ran log ) |
| 98 | 1re | ⊢ 1 ∈ ℝ | |
| 99 | 92 | adantr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( i · 𝐴 ) ∈ ℝ ) |
| 100 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℝ ) | |
| 101 | 98 99 100 | sylancr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℝ ) |
| 102 | 0red | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → 0 ∈ ℝ ) | |
| 103 | 1red | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → 1 ∈ ℝ ) | |
| 104 | 0lt1 | ⊢ 0 < 1 | |
| 105 | 104 | a1i | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → 0 < 1 ) |
| 106 | addge01 | ⊢ ( ( 1 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( i · 𝐴 ) ↔ 1 ≤ ( 1 + ( i · 𝐴 ) ) ) ) | |
| 107 | 98 92 106 | sylancr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( 0 ≤ ( i · 𝐴 ) ↔ 1 ≤ ( 1 + ( i · 𝐴 ) ) ) ) |
| 108 | 107 | biimpa | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → 1 ≤ ( 1 + ( i · 𝐴 ) ) ) |
| 109 | 102 103 101 105 108 | ltletrd | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → 0 < ( 1 + ( i · 𝐴 ) ) ) |
| 110 | 101 109 | elrpd | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℝ+ ) |
| 111 | 110 | relogcld | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 112 | logrnaddcl | ⊢ ( ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ran log ∧ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℝ ) → ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ran log ) | |
| 113 | 97 111 112 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 114 | 94 113 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ 0 ≤ ( i · 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 115 | logrncl | ⊢ ( ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ran log ) | |
| 116 | 13 14 115 | syl2anc | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ran log ) |
| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ran log ) |
| 118 | 92 | adantr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
| 119 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℝ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℝ ) | |
| 120 | 98 118 119 | sylancr | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( 1 − ( i · 𝐴 ) ) ∈ ℝ ) |
| 121 | 0red | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → 0 ∈ ℝ ) | |
| 122 | 1red | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → 1 ∈ ℝ ) | |
| 123 | 104 | a1i | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → 0 < 1 ) |
| 124 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 125 | 1red | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → 1 ∈ ℝ ) | |
| 126 | 92 86 125 | lesub2d | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( ( i · 𝐴 ) ≤ 0 ↔ ( 1 − 0 ) ≤ ( 1 − ( i · 𝐴 ) ) ) ) |
| 127 | 126 | biimpa | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( 1 − 0 ) ≤ ( 1 − ( i · 𝐴 ) ) ) |
| 128 | 124 127 | eqbrtrrid | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → 1 ≤ ( 1 − ( i · 𝐴 ) ) ) |
| 129 | 121 122 120 123 128 | ltletrd | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → 0 < ( 1 − ( i · 𝐴 ) ) ) |
| 130 | 120 129 | elrpd | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( 1 − ( i · 𝐴 ) ) ∈ ℝ+ ) |
| 131 | 130 | relogcld | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 132 | logrnaddcl | ⊢ ( ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ran log ∧ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) | |
| 133 | 117 131 132 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) ∧ ( i · 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 134 | 86 92 114 133 | lecasei | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 = ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 135 | 85 134 | jaodan | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( 0 < ( ℜ ‘ 𝐴 ) ∨ 0 = ( ℜ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 136 | 7 135 | syldan | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |