This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | argimlt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < 0 ) | |
| 2 | 1 | lt0ne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 3 | fveq2 | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) | |
| 4 | im0 | ⊢ ( ℑ ‘ 0 ) = 0 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
| 6 | 5 | necon3i | ⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 7 | 2 6 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝐴 ≠ 0 ) |
| 8 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | 7 8 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 10 | 9 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 11 | logcj | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) | |
| 12 | 2 11 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( log ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( log ‘ 𝐴 ) ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 14 | 9 | imcjd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 15 | 13 14 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 16 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 17 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 19 | 18 | lt0neg1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) < 0 ↔ 0 < - ( ℑ ‘ 𝐴 ) ) ) |
| 20 | 1 19 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 < - ( ℑ ‘ 𝐴 ) ) |
| 21 | imcj | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 23 | 20 22 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 < ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 24 | argimgt0 | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 0 < ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ∈ ( 0 (,) π ) ) | |
| 25 | 16 23 24 | syl2an2r | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ∈ ( 0 (,) π ) ) |
| 26 | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ∧ ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) < π ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( 0 < ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ∧ ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) < π ) ) |
| 28 | 27 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) < π ) |
| 29 | 15 28 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 30 | pire | ⊢ π ∈ ℝ | |
| 31 | ltnegcon1 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 32 | 10 30 31 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 33 | 29 32 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 34 | 27 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 < ( ℑ ‘ ( log ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 35 | 34 15 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 36 | 10 | lt0neg1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ↔ 0 < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 37 | 35 36 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) |
| 38 | 30 | renegcli | ⊢ - π ∈ ℝ |
| 39 | 38 | rexri | ⊢ - π ∈ ℝ* |
| 40 | 0xr | ⊢ 0 ∈ ℝ* | |
| 41 | elioo2 | ⊢ ( ( - π ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) ) | |
| 42 | 39 40 41 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) |
| 43 | 10 33 37 42 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |