This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rule sqrt ( z w ) = ( sqrt z ) ( sqrt w ) is not always true on the complex numbers, but it is true when the arguments of z and w sum to within the interval ( -upi , pi ] , so there are some cases such as this one with z = 1 +i A and w = 1 - i A which are true unconditionally. This result can also be stated as " sqrt ( 1 + z ) + sqrt ( 1 - z ) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanlogadd | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 ∈ dom arctan → 0 ∈ ℝ ) | |
| 2 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 3 | 2 | simp1bi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 4 | 3 | recld | ⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 5 | atanlogaddlem | ⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) | |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 9 | 7 3 8 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
| 10 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 11 | 6 9 10 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 12 | 2 | simp3bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 13 | 11 12 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 14 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 15 | 6 9 14 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 16 | 2 | simp2bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 17 | 15 16 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 18 | 13 17 | addcomd | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 19 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 20 | 7 3 19 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 + - ( i · 𝐴 ) ) ) |
| 22 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) | |
| 23 | 6 9 22 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 24 | 21 23 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
| 26 | 20 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 − - ( i · 𝐴 ) ) ) |
| 27 | subneg | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) | |
| 28 | 6 9 27 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 29 | 26 28 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 31 | 25 30 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 32 | 18 31 | eqtr4d | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ) |
| 34 | atandmneg | ⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) | |
| 35 | 4 | le0neg1d | ⊢ ( 𝐴 ∈ dom arctan → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
| 36 | 35 | biimpa | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ - ( ℜ ‘ 𝐴 ) ) |
| 37 | 3 | renegd | ⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 39 | 36 38 | breqtrrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ - 𝐴 ) ) |
| 40 | atanlogaddlem | ⊢ ( ( - 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ - 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ∈ ran log ) | |
| 41 | 34 39 40 | syl2an2r | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ∈ ran log ) |
| 42 | 33 41 | eqeltrd | ⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 43 | 1 4 5 42 | lecasei | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |