This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | argimgt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | gt0ne0 | ⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
| 4 | fveq2 | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ 0 ) ) | |
| 5 | im0 | ⊢ ( ℑ ‘ 0 ) = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 = 0 → ( ℑ ‘ 𝐴 ) = 0 ) |
| 7 | 6 | necon3i | ⊢ ( ( ℑ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 9 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | 8 9 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 11 | 10 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ 𝐴 ) ) | |
| 13 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 16 | 15 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 ) |
| 17 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) | |
| 18 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 19 | 8 18 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 20 | 19 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 21 | 17 15 20 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 22 | 14 21 | immul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 23 | 17 15 20 | divcan2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 25 | 22 24 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℑ ‘ 𝐴 ) ) |
| 26 | 12 16 25 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 27 | 0re | ⊢ 0 ∈ ℝ | |
| 28 | 27 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
| 29 | 21 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 30 | 28 29 19 | ltmul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) ) |
| 31 | 26 30 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 32 | efiarg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) | |
| 33 | 8 32 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℑ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 35 | 31 34 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 36 | resinval | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | |
| 37 | 11 36 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 38 | 35 37 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 39 | 11 | resincld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 40 | 39 | lt0neg2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) |
| 41 | 38 40 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) |
| 42 | pire | ⊢ π ∈ ℝ | |
| 43 | readdcl | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ) | |
| 44 | 11 42 43 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ) |
| 46 | df-neg | ⊢ - π = ( 0 − π ) | |
| 47 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 48 | 8 47 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 49 | 48 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 50 | 42 | renegcli | ⊢ - π ∈ ℝ |
| 51 | ltle | ⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 52 | 50 11 51 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 53 | 49 52 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 54 | 46 53 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 55 | 42 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
| 56 | 28 55 11 | lesubaddd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( 0 − π ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) ) |
| 57 | 54 56 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) |
| 59 | 11 28 55 | leadd1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ ( 0 + π ) ) ) |
| 60 | 59 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ ( 0 + π ) ) |
| 61 | picn | ⊢ π ∈ ℂ | |
| 62 | 61 | addlidi | ⊢ ( 0 + π ) = π |
| 63 | 60 62 | breqtrdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ π ) |
| 64 | 27 42 | elicc2i | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ( 0 [,] π ) ↔ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ℝ ∧ 0 ≤ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∧ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ≤ π ) ) |
| 65 | 45 58 63 64 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ( 0 [,] π ) ) |
| 66 | sinq12ge0 | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → 0 ≤ ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) ) |
| 68 | 11 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 69 | sinppi | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) = - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) = - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → ( sin ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + π ) ) = - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 72 | 67 71 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) → 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 73 | 72 | ex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 → 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 74 | 73 | con3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ¬ 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) → ¬ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) ) |
| 75 | 39 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 76 | ltnle | ⊢ ( ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ↔ ¬ 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | |
| 77 | 75 27 76 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ↔ ¬ 0 ≤ - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 78 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ ¬ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) ) | |
| 79 | 27 11 78 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ ¬ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ 0 ) ) |
| 80 | 74 77 79 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - ( sin ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 81 | 41 80 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 82 | 48 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 83 | rpre | ⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) | |
| 84 | 83 | renegcld | ⊢ ( - 𝐴 ∈ ℝ+ → - - 𝐴 ∈ ℝ ) |
| 85 | negneg | ⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) | |
| 86 | 85 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - - 𝐴 = 𝐴 ) |
| 87 | 86 | eleq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 88 | 84 87 | imbitrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) ) |
| 89 | lognegb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) | |
| 90 | 8 89 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( - 𝐴 ∈ ℝ+ ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) = π ) ) |
| 91 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 92 | 91 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 93 | 88 90 92 | 3imtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) = π → ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 94 | 93 | necon3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) ) |
| 95 | 3 94 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
| 96 | 95 | necomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ≠ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 97 | 11 55 82 96 | leneltd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
| 98 | 0xr | ⊢ 0 ∈ ℝ* | |
| 99 | 42 | rexri | ⊢ π ∈ ℝ* |
| 100 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) ) | |
| 101 | 98 99 100 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
| 102 | 11 81 97 101 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |