This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addge01 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | leadd2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴 + 0 ) ≤ ( 𝐴 + 𝐵 ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴 + 0 ) ≤ ( 𝐴 + 𝐵 ) ) ) |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 𝐴 + 0 ) ≤ ( 𝐴 + 𝐵 ) ) ) |
| 5 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 6 | 5 | addridd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 8 | 7 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 0 ) ≤ ( 𝐴 + 𝐵 ) ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) |
| 9 | 4 8 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) |