This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for atanlogadd . (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanlogaddlem | |- ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | atandm2 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
|
| 3 | 2 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 4 | 3 | recld | |- ( A e. dom arctan -> ( Re ` A ) e. RR ) |
| 5 | leloe | |- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 <_ ( Re ` A ) <-> ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) ) |
|
| 6 | 1 4 5 | sylancr | |- ( A e. dom arctan -> ( 0 <_ ( Re ` A ) <-> ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) ) |
| 7 | 6 | biimpa | |- ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) |
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | ax-icn | |- _i e. CC |
|
| 10 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 11 | 9 3 10 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 12 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 13 | 8 11 12 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 14 | 2 | simp3bi | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 15 | 13 14 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 16 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 17 | 8 11 16 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 18 | 2 | simp2bi | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 19 | 17 18 | logcld | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 20 | 15 19 | addcld | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 21 | 20 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 22 | pire | |- _pi e. RR |
|
| 23 | 22 | renegcli | |- -u _pi e. RR |
| 24 | 23 | a1i | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi e. RR ) |
| 25 | 19 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 26 | 25 | imcld | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. RR ) |
| 27 | 15 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 28 | 27 | imcld | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. RR ) |
| 29 | 28 26 | readdcld | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) |
| 30 | 17 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 31 | im1 | |- ( Im ` 1 ) = 0 |
|
| 32 | 31 | oveq1i | |- ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) = ( 0 - ( Im ` ( _i x. A ) ) ) |
| 33 | df-neg | |- -u ( Im ` ( _i x. A ) ) = ( 0 - ( Im ` ( _i x. A ) ) ) |
|
| 34 | 32 33 | eqtr4i | |- ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) = -u ( Im ` ( _i x. A ) ) |
| 35 | 11 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( _i x. A ) e. CC ) |
| 36 | imsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
|
| 37 | 8 35 36 | sylancr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
| 38 | 3 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> A e. CC ) |
| 39 | reim | |- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
|
| 40 | 38 39 | syl | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 41 | 40 | negeqd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u ( Re ` A ) = -u ( Im ` ( _i x. A ) ) ) |
| 42 | 34 37 41 | 3eqtr4a | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = -u ( Re ` A ) ) |
| 43 | 4 | lt0neg2d | |- ( A e. dom arctan -> ( 0 < ( Re ` A ) <-> -u ( Re ` A ) < 0 ) ) |
| 44 | 43 | biimpa | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u ( Re ` A ) < 0 ) |
| 45 | 42 44 | eqbrtrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 - ( _i x. A ) ) ) < 0 ) |
| 46 | argimlt0 | |- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( Im ` ( 1 - ( _i x. A ) ) ) < 0 ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. ( -u _pi (,) 0 ) ) |
|
| 47 | 30 45 46 | syl2anc | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. ( -u _pi (,) 0 ) ) |
| 48 | eliooord | |- ( ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) e. ( -u _pi (,) 0 ) -> ( -u _pi < ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < 0 ) ) |
|
| 49 | 47 48 | syl | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( -u _pi < ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < 0 ) ) |
| 50 | 49 | simpld | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi < ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 51 | 13 | adantr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 52 | simpr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 < ( Re ` A ) ) |
|
| 53 | imadd | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
|
| 54 | 8 35 53 | sylancr | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 55 | 40 | oveq2d | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` 1 ) + ( Re ` A ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 56 | 31 | oveq1i | |- ( ( Im ` 1 ) + ( Re ` A ) ) = ( 0 + ( Re ` A ) ) |
| 57 | 38 | recld | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. RR ) |
| 58 | 57 | recnd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. CC ) |
| 59 | 58 | addlidd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 0 + ( Re ` A ) ) = ( Re ` A ) ) |
| 60 | 56 59 | eqtrid | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` 1 ) + ( Re ` A ) ) = ( Re ` A ) ) |
| 61 | 54 55 60 | 3eqtr2d | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( Re ` A ) ) |
| 62 | 52 61 | breqtrrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 < ( Im ` ( 1 + ( _i x. A ) ) ) ) |
| 63 | argimgt0 | |- ( ( ( 1 + ( _i x. A ) ) e. CC /\ 0 < ( Im ` ( 1 + ( _i x. A ) ) ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. ( 0 (,) _pi ) ) |
|
| 64 | 51 62 63 | syl2anc | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. ( 0 (,) _pi ) ) |
| 65 | eliooord | |- ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. ( 0 (,) _pi ) -> ( 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) < _pi ) ) |
|
| 66 | 64 65 | syl | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) /\ ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) < _pi ) ) |
| 67 | 66 | simpld | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 68 | 28 26 | ltaddpos2d | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( 0 < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) <-> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) ) |
| 69 | 67 68 | mpbid | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 70 | 24 26 29 50 69 | lttrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 71 | 27 25 | imaddd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 72 | 70 71 | breqtrrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 73 | 22 | a1i | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> _pi e. RR ) |
| 74 | 0red | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> 0 e. RR ) |
|
| 75 | 49 | simprd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) < 0 ) |
| 76 | 26 74 28 75 | ltadd2dd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) < ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + 0 ) ) |
| 77 | 28 | recnd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 78 | 77 | addridd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + 0 ) = ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 79 | 76 78 | breqtrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) < ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 80 | 66 | simprd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) < _pi ) |
| 81 | 29 28 73 79 80 | lttrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) |
| 82 | 29 73 81 | ltled | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( Im ` ( log ` ( 1 + ( _i x. A ) ) ) ) + ( Im ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) |
| 83 | 71 82 | eqbrtrd | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) |
| 84 | ellogrn | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log <-> ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
|
| 85 | 21 72 83 84 | syl3anbrc | |- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 86 | 0red | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> 0 e. RR ) |
|
| 87 | 11 | adantr | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( _i x. A ) e. CC ) |
| 88 | simpr | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> 0 = ( Re ` A ) ) |
|
| 89 | 3 | adantr | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> A e. CC ) |
| 90 | 89 39 | syl | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 91 | 88 90 | eqtr2d | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( Im ` ( _i x. A ) ) = 0 ) |
| 92 | 87 91 | reim0bd | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( _i x. A ) e. RR ) |
| 93 | 15 19 | addcomd | |- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 94 | 93 | ad2antrr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 95 | logrncl | |- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. ran log ) |
|
| 96 | 17 18 95 | syl2anc | |- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. ran log ) |
| 97 | 96 | ad2antrr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. ran log ) |
| 98 | 1re | |- 1 e. RR |
|
| 99 | 92 | adantr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( _i x. A ) e. RR ) |
| 100 | readdcl | |- ( ( 1 e. RR /\ ( _i x. A ) e. RR ) -> ( 1 + ( _i x. A ) ) e. RR ) |
|
| 101 | 98 99 100 | sylancr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( 1 + ( _i x. A ) ) e. RR ) |
| 102 | 0red | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 0 e. RR ) |
|
| 103 | 1red | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 1 e. RR ) |
|
| 104 | 0lt1 | |- 0 < 1 |
|
| 105 | 104 | a1i | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 0 < 1 ) |
| 106 | addge01 | |- ( ( 1 e. RR /\ ( _i x. A ) e. RR ) -> ( 0 <_ ( _i x. A ) <-> 1 <_ ( 1 + ( _i x. A ) ) ) ) |
|
| 107 | 98 92 106 | sylancr | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( 0 <_ ( _i x. A ) <-> 1 <_ ( 1 + ( _i x. A ) ) ) ) |
| 108 | 107 | biimpa | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 1 <_ ( 1 + ( _i x. A ) ) ) |
| 109 | 102 103 101 105 108 | ltletrd | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> 0 < ( 1 + ( _i x. A ) ) ) |
| 110 | 101 109 | elrpd | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( 1 + ( _i x. A ) ) e. RR+ ) |
| 111 | 110 | relogcld | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. RR ) |
| 112 | logrnaddcl | |- ( ( ( log ` ( 1 - ( _i x. A ) ) ) e. ran log /\ ( log ` ( 1 + ( _i x. A ) ) ) e. RR ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) e. ran log ) |
|
| 113 | 97 111 112 | syl2anc | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) e. ran log ) |
| 114 | 94 113 | eqeltrd | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ 0 <_ ( _i x. A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 115 | logrncl | |- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. ran log ) |
|
| 116 | 13 14 115 | syl2anc | |- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. ran log ) |
| 117 | 116 | ad2antrr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. ran log ) |
| 118 | 92 | adantr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( _i x. A ) e. RR ) |
| 119 | resubcl | |- ( ( 1 e. RR /\ ( _i x. A ) e. RR ) -> ( 1 - ( _i x. A ) ) e. RR ) |
|
| 120 | 98 118 119 | sylancr | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( 1 - ( _i x. A ) ) e. RR ) |
| 121 | 0red | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 0 e. RR ) |
|
| 122 | 1red | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 1 e. RR ) |
|
| 123 | 104 | a1i | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 0 < 1 ) |
| 124 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 125 | 1red | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> 1 e. RR ) |
|
| 126 | 92 86 125 | lesub2d | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( ( _i x. A ) <_ 0 <-> ( 1 - 0 ) <_ ( 1 - ( _i x. A ) ) ) ) |
| 127 | 126 | biimpa | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( 1 - 0 ) <_ ( 1 - ( _i x. A ) ) ) |
| 128 | 124 127 | eqbrtrrid | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 1 <_ ( 1 - ( _i x. A ) ) ) |
| 129 | 121 122 120 123 128 | ltletrd | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> 0 < ( 1 - ( _i x. A ) ) ) |
| 130 | 120 129 | elrpd | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( 1 - ( _i x. A ) ) e. RR+ ) |
| 131 | 130 | relogcld | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. RR ) |
| 132 | logrnaddcl | |- ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. ran log /\ ( log ` ( 1 - ( _i x. A ) ) ) e. RR ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
|
| 133 | 117 131 132 | syl2anc | |- ( ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) /\ ( _i x. A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 134 | 86 92 114 133 | lecasei | |- ( ( A e. dom arctan /\ 0 = ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 135 | 85 134 | jaodan | |- ( ( A e. dom arctan /\ ( 0 < ( Re ` A ) \/ 0 = ( Re ` A ) ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 136 | 7 135 | syldan | |- ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |