This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | ||
| ackbij.h | ⊢ 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) | ||
| Assertion | ackbij2 | ⊢ 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | |
| 3 | ackbij.h | ⊢ 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) | |
| 4 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) | |
| 5 | fvex | ⊢ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ∈ V | |
| 6 | 4 5 | f1iun | ⊢ ( ∀ 𝑎 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ∧ ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) → ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 7 | 1 2 | ackbij2lem2 | ⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
| 8 | f1of1 | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ) |
| 10 | ordom | ⊢ Ord ω | |
| 11 | r1fin | ⊢ ( 𝑎 ∈ ω → ( 𝑅1 ‘ 𝑎 ) ∈ Fin ) | |
| 12 | ficardom | ⊢ ( ( 𝑅1 ‘ 𝑎 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑎 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) |
| 14 | ordelss | ⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∈ ω ) → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) | |
| 15 | 10 13 14 | sylancr | ⊢ ( 𝑎 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) |
| 16 | f1ss | ⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ∧ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ⊆ ω ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) | |
| 17 | 9 15 16 | syl2anc | ⊢ ( 𝑎 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 18 | nnord | ⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) | |
| 19 | nnord | ⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) | |
| 20 | ordtri2or2 | ⊢ ( ( Ord 𝑎 ∧ Ord 𝑏 ) → ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) ) |
| 22 | 1 2 | ackbij2lem4 | ⊢ ( ( ( 𝑏 ∈ ω ∧ 𝑎 ∈ ω ) ∧ 𝑎 ⊆ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
| 23 | 22 | ex | ⊢ ( ( 𝑏 ∈ ω ∧ 𝑎 ∈ ω ) → ( 𝑎 ⊆ 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 24 | 23 | ancoms | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑎 ⊆ 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 25 | 1 2 | ackbij2lem4 | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ 𝑏 ⊆ 𝑎 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( 𝑏 ⊆ 𝑎 → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
| 27 | 24 26 | orim12d | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( 𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) ) |
| 28 | 21 27 | mpd | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝑎 ∈ ω → ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) |
| 30 | 17 29 | jca | ⊢ ( 𝑎 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ∧ ∀ 𝑏 ∈ ω ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∨ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) ) ) |
| 31 | 6 30 | mprg | ⊢ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω |
| 32 | rdgfun | ⊢ Fun rec ( 𝐺 , ∅ ) | |
| 33 | funiunfv | ⊢ ( Fun rec ( 𝐺 , ∅ ) → ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) ) | |
| 34 | 33 | eqcomd | ⊢ ( Fun rec ( 𝐺 , ∅ ) → ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ) |
| 35 | f1eq1 | ⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) → ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) ) | |
| 36 | 32 34 35 | mp2b | ⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) |
| 37 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 38 | 37 | simpli | ⊢ Fun 𝑅1 |
| 39 | funiunfv | ⊢ ( Fun 𝑅1 → ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) ) | |
| 40 | f1eq2 | ⊢ ( ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) → ( ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) ) | |
| 41 | 38 39 40 | mp2b | ⊢ ( ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ) |
| 42 | 36 41 | bitr4i | ⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ↔ ∪ 𝑎 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) –1-1→ ω ) |
| 43 | 31 42 | mpbir | ⊢ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω |
| 44 | rnuni | ⊢ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 | |
| 45 | eliun | ⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 ↔ ∃ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) 𝑏 ∈ ran 𝑎 ) | |
| 46 | df-rex | ⊢ ( ∃ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) 𝑏 ∈ ran 𝑎 ↔ ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) | |
| 47 | funfn | ⊢ ( Fun rec ( 𝐺 , ∅ ) ↔ rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ) | |
| 48 | 32 47 | mpbi | ⊢ rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) |
| 49 | rdgdmlim | ⊢ Lim dom rec ( 𝐺 , ∅ ) | |
| 50 | limomss | ⊢ ( Lim dom rec ( 𝐺 , ∅ ) → ω ⊆ dom rec ( 𝐺 , ∅ ) ) | |
| 51 | 49 50 | ax-mp | ⊢ ω ⊆ dom rec ( 𝐺 , ∅ ) |
| 52 | fvelimab | ⊢ ( ( rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ∧ ω ⊆ dom rec ( 𝐺 , ∅ ) ) → ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 ) ) | |
| 53 | 48 51 52 | mp2an | ⊢ ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 ) |
| 54 | 1 2 | ackbij2lem2 | ⊢ ( 𝑐 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
| 55 | f1ofo | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 56 | forn | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) : ( 𝑅1 ‘ 𝑐 ) –onto→ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 57 | 54 55 56 | 3syl | ⊢ ( 𝑐 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ) |
| 58 | r1fin | ⊢ ( 𝑐 ∈ ω → ( 𝑅1 ‘ 𝑐 ) ∈ Fin ) | |
| 59 | ficardom | ⊢ ( ( 𝑅1 ‘ 𝑐 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) | |
| 60 | 58 59 | syl | ⊢ ( 𝑐 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) |
| 61 | ordelss | ⊢ ( ( Ord ω ∧ ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ∈ ω ) → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ⊆ ω ) | |
| 62 | 10 60 61 | sylancr | ⊢ ( 𝑐 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑐 ) ) ⊆ ω ) |
| 63 | 57 62 | eqsstrd | ⊢ ( 𝑐 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) ⊆ ω ) |
| 64 | rneq | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = ran 𝑎 ) | |
| 65 | 64 | sseq1d | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ( ran ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) ⊆ ω ↔ ran 𝑎 ⊆ ω ) ) |
| 66 | 63 65 | syl5ibcom | ⊢ ( 𝑐 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran 𝑎 ⊆ ω ) ) |
| 67 | 66 | rexlimiv | ⊢ ( ∃ 𝑐 ∈ ω ( rec ( 𝐺 , ∅ ) ‘ 𝑐 ) = 𝑎 → ran 𝑎 ⊆ ω ) |
| 68 | 53 67 | sylbi | ⊢ ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) → ran 𝑎 ⊆ ω ) |
| 69 | 68 | sselda | ⊢ ( ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) → 𝑏 ∈ ω ) |
| 70 | 69 | exlimiv | ⊢ ( ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) → 𝑏 ∈ ω ) |
| 71 | peano2 | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) | |
| 72 | fnfvima | ⊢ ( ( rec ( 𝐺 , ∅ ) Fn dom rec ( 𝐺 , ∅ ) ∧ ω ⊆ dom rec ( 𝐺 , ∅ ) ∧ suc 𝑏 ∈ ω ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) | |
| 73 | 48 51 71 72 | mp3an12i | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) |
| 74 | vex | ⊢ 𝑏 ∈ V | |
| 75 | cardnn | ⊢ ( suc 𝑏 ∈ ω → ( card ‘ suc 𝑏 ) = suc 𝑏 ) | |
| 76 | fvex | ⊢ ( 𝑅1 ‘ suc 𝑏 ) ∈ V | |
| 77 | 37 | simpri | ⊢ Lim dom 𝑅1 |
| 78 | limomss | ⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) | |
| 79 | 77 78 | ax-mp | ⊢ ω ⊆ dom 𝑅1 |
| 80 | 79 | sseli | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ dom 𝑅1 ) |
| 81 | onssr1 | ⊢ ( suc 𝑏 ∈ dom 𝑅1 → suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 82 | 80 81 | syl | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 83 | ssdomg | ⊢ ( ( 𝑅1 ‘ suc 𝑏 ) ∈ V → ( suc 𝑏 ⊆ ( 𝑅1 ‘ suc 𝑏 ) → suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) | |
| 84 | 76 82 83 | mpsyl | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) |
| 85 | nnon | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ On ) | |
| 86 | onenon | ⊢ ( suc 𝑏 ∈ On → suc 𝑏 ∈ dom card ) | |
| 87 | 85 86 | syl | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ∈ dom card ) |
| 88 | r1fin | ⊢ ( suc 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ∈ Fin ) | |
| 89 | finnum | ⊢ ( ( 𝑅1 ‘ suc 𝑏 ) ∈ Fin → ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) | |
| 90 | 88 89 | syl | ⊢ ( suc 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) |
| 91 | carddom2 | ⊢ ( ( suc 𝑏 ∈ dom card ∧ ( 𝑅1 ‘ suc 𝑏 ) ∈ dom card ) → ( ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) | |
| 92 | 87 90 91 | syl2anc | ⊢ ( suc 𝑏 ∈ ω → ( ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ suc 𝑏 ≼ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 93 | 84 92 | mpbird | ⊢ ( suc 𝑏 ∈ ω → ( card ‘ suc 𝑏 ) ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 94 | 75 93 | eqsstrrd | ⊢ ( suc 𝑏 ∈ ω → suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 95 | 71 94 | syl | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 96 | sucssel | ⊢ ( 𝑏 ∈ V → ( suc 𝑏 ⊆ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → 𝑏 ∈ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) | |
| 97 | 74 95 96 | mpsyl | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 98 | 1 2 | ackbij2lem2 | ⊢ ( suc 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 99 | f1ofo | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) | |
| 100 | forn | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) → ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) | |
| 101 | 71 98 99 100 | 4syl | ⊢ ( 𝑏 ∈ ω → ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 102 | 97 101 | eleqtrrd | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 103 | fvex | ⊢ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ V | |
| 104 | eleq1 | ⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ) ) | |
| 105 | rneq | ⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ran 𝑎 = ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) | |
| 106 | 105 | eleq2d | ⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( 𝑏 ∈ ran 𝑎 ↔ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 107 | 104 106 | anbi12d | ⊢ ( 𝑎 = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ↔ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) ) |
| 108 | 103 107 | spcev | ⊢ ( ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) → ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
| 109 | 73 102 108 | syl2anc | ⊢ ( 𝑏 ∈ ω → ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ) |
| 110 | 70 109 | impbii | ⊢ ( ∃ 𝑎 ( 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ∧ 𝑏 ∈ ran 𝑎 ) ↔ 𝑏 ∈ ω ) |
| 111 | 45 46 110 | 3bitri | ⊢ ( 𝑏 ∈ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 ↔ 𝑏 ∈ ω ) |
| 112 | 111 | eqriv | ⊢ ∪ 𝑎 ∈ ( rec ( 𝐺 , ∅ ) “ ω ) ran 𝑎 = ω |
| 113 | 44 112 | eqtri | ⊢ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ω |
| 114 | dff1o5 | ⊢ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ( ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1→ ω ∧ ran ∪ ( rec ( 𝐺 , ∅ ) “ ω ) = ω ) ) | |
| 115 | 43 113 114 | mpbir2an | ⊢ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |
| 116 | f1oeq1 | ⊢ ( 𝐻 = ∪ ( rec ( 𝐺 , ∅ ) “ ω ) → ( 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ) ) | |
| 117 | 3 116 | ax-mp | ⊢ ( 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ↔ ∪ ( rec ( 𝐺 , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω ) |
| 118 | 115 117 | mpbir | ⊢ 𝐻 : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |