This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first _om levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1fin | ⊢ ( 𝐴 ∈ ω → ( 𝑅1 ‘ 𝐴 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑛 = ∅ → ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑛 = ∅ → ( ( 𝑅1 ‘ 𝑛 ) ∈ Fin ↔ ( 𝑅1 ‘ ∅ ) ∈ Fin ) ) |
| 3 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ 𝑚 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑅1 ‘ 𝑛 ) ∈ Fin ↔ ( 𝑅1 ‘ 𝑚 ) ∈ Fin ) ) |
| 5 | fveq2 | ⊢ ( 𝑛 = suc 𝑚 → ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ suc 𝑚 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑛 = suc 𝑚 → ( ( 𝑅1 ‘ 𝑛 ) ∈ Fin ↔ ( 𝑅1 ‘ suc 𝑚 ) ∈ Fin ) ) |
| 7 | fveq2 | ⊢ ( 𝑛 = 𝐴 → ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑛 = 𝐴 → ( ( 𝑅1 ‘ 𝑛 ) ∈ Fin ↔ ( 𝑅1 ‘ 𝐴 ) ∈ Fin ) ) |
| 9 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 10 | 0fi | ⊢ ∅ ∈ Fin | |
| 11 | 9 10 | eqeltri | ⊢ ( 𝑅1 ‘ ∅ ) ∈ Fin |
| 12 | pwfi | ⊢ ( ( 𝑅1 ‘ 𝑚 ) ∈ Fin ↔ 𝒫 ( 𝑅1 ‘ 𝑚 ) ∈ Fin ) | |
| 13 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 14 | 13 | simpri | ⊢ Lim dom 𝑅1 |
| 15 | limomss | ⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) | |
| 16 | 14 15 | ax-mp | ⊢ ω ⊆ dom 𝑅1 |
| 17 | 16 | sseli | ⊢ ( 𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1 ) |
| 18 | r1sucg | ⊢ ( 𝑚 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑚 ) = 𝒫 ( 𝑅1 ‘ 𝑚 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑚 ∈ ω → ( 𝑅1 ‘ suc 𝑚 ) = 𝒫 ( 𝑅1 ‘ 𝑚 ) ) |
| 20 | 19 | eleq1d | ⊢ ( 𝑚 ∈ ω → ( ( 𝑅1 ‘ suc 𝑚 ) ∈ Fin ↔ 𝒫 ( 𝑅1 ‘ 𝑚 ) ∈ Fin ) ) |
| 21 | 12 20 | bitr4id | ⊢ ( 𝑚 ∈ ω → ( ( 𝑅1 ‘ 𝑚 ) ∈ Fin ↔ ( 𝑅1 ‘ suc 𝑚 ) ∈ Fin ) ) |
| 22 | 21 | biimpd | ⊢ ( 𝑚 ∈ ω → ( ( 𝑅1 ‘ 𝑚 ) ∈ Fin → ( 𝑅1 ‘ suc 𝑚 ) ∈ Fin ) ) |
| 23 | 2 4 6 8 11 22 | finds | ⊢ ( 𝐴 ∈ ω → ( 𝑅1 ‘ 𝐴 ) ∈ Fin ) |